声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 1414|回复: 0

[百科建设] 非线性的定义

[复制链接]
发表于 2008-1-10 17:33 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?我要加入

x
迄今为止,对非线性的概念、非线性的性质,并没有清晰的、完整的认识,对其哲学意义也没有充分地开掘。

       线性:从相互关联的两个角度来界定,其一:叠加原理成立;其二:物理变量间的函数关系是直线,变量间的变化率是恒量。

      非线性: 在明确了线性的含义后,相应地非线性概念就易于界定:

      其—,“定义非线性算符N(φ)为对一些a、b或φ、ψ不满足L(a*φ+b*ψ)=a*L(φ)+b*L(ψ)的算符”,即叠加原理不成立,这意味着φ与ψ间存在着耦合,对(a*φ+b*ψ)的*作,等于分别对φ和ψ作*外,再加上对φ与ψ的交叉项(耦合项)的*作,或者φ、ψ是不连续(有突变或断裂)、不可微(有折点)的。

      其二,作为等价的另—种表述,我们可以从另一个角度来理解非线性:在用于描述—个系统的一套确定的物理变量中,一个系统的—个变量最初的变化所造成的此变量或其它变量的相应变化是不成比例的,换言之,变量间的变化率不是恒量,函数的斜率在其定义域中有不存在或不相等的地方,概括地说,就是物理变量间的一级增量关系在变量的定义域内是不对称的。可以说,这种对称破缺是非线性关系的最基本的体现,也是非线性系统复杂性的根源。

      对非线性概念的这两种表述实际上是等价的,其—叠加原理不成立必将导致其二物理变量关系不对称;反之,如果物理变量关系不对称,那么叠加原理将不成立。之所以采用了两种表述,是因为在不同的场合,对于不同的对象,两种表述有各自的方便之处,如前者对于考察系统中整体与部分的关系、微分方程的性质是方便的,后者对于考察特定的变量间的关系(包括变量的时间行为)将是方便的。

     关于非线性概念需要强调的是,线性或非线性的提法是相对于物理变量而言的,也就是说,只有物理变量的关系才是判断是否是非线性的根据,而非物理变量的关系不能成为非线性与否的判据。这里所说的物理变量是指那些可以观测的、人们感兴趣的、对人类有意义的变量。例如分形理论中,简单分形的分维D是恒量,在无标度区间内lnN=DlnL,lnN与lnL是线性关系,但是显然不能籍此得出简单分形是线性的结论。这里的物理变量是N和 L,而不是经过对数变换的nN与lnL,即人们可观测的、感兴趣的、对人们有意义的是N和L,而不是lnN和lnL,N与L的关系N=LD是非线性的,所以可得出分形是非线性的结论。再如,物价对时间的直接关系(而不足Mandbrolt所统计的棉花价格指数的无标度性)正是人们感兴趣的、对人们有意义的,而且两者的关系是非线性的,所以物价随时间的变化是一种非线性现象。

     关于线性与非线性的联系:
  
     一些非线性不强的问题,可用线性逼近方法将其转化为若干线性问题来求近似解,这是已在各门学科中广泛采用并相当有效的的方法。
   
     对某些问题从非线性的角度考察不仅是可能的,而且有时也是必要的。      

     关于线性与非线性的本质区别:

     非线性与线性虽然可以通过数学变换而相互转化,在数学上有一定的联系,但是在同一视角、同一层次、同一参照系下,非线性与线性又是有本质区别的。  
   
     在数学上,线性函数关系是直线,而非线性函数关系是非直线,包括各种曲线、折线、不连续的线等;线性方程满足叠加原理,非线性方程不满足叠加原理;线性方程易于求出解析解,而非线性方程一般不能得出解析解。
     
     在物理上,近线性问题(它不是我们所说的非线性问题)可用线性逼近方法求出一定精确度的解,即依据具体问题对精确度的要求,逐次解出若干个线性问题,把它们叠加起来,就能得到很好的近似解。但是对于非线性问题,由于存有小参数发散及收敛慢等问题,线性逼近方法将失效,特别是对于高速运动状态、强烈的相互作用、长时间的动态行为等非线性很强的情况,线性方法将完全无能为力。线性逼近方法的这些局限性,导致非线性方法的不可替代,在无法用线性方法处理的强非线性的地方,只能用非线性方法。线性逼近方法并非经常能奏效,这不光是方法论问题,也是自然观问题,自然界既有量变又有质变,[5]在质变中, 自然界要经历跃变或转折,这是线性所不能包容的。

     关于非线性概念需要强调的是,线性或非线性的提法是相对于物理变量而言的,也就是说,只有物理变量的关系才是判断是否是非线性的根据,而非物理变量的关系不能成为非线性与否的判据。

     一个确定的系统,一般都同时具有线性和非线性两种性质:首先,在一个给定的非线性系统中,它的非线性性质决定它的平衡构造或说稳定机制是否存在,及存在的地方。其次,系统的线性性质决定着系统关于其平衡点(稳定结构)的小振动的规律,即系统在稳定点附近的线性展开性质。

     相对于非线性的数学表达而言,它的物理机制是更重要的,也是我们更感兴趣的。

     非线性的—个最主要的物理机制,可以说就是相互作用

评分

1

查看全部评分

回复
分享到:

使用道具 举报

您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2024-12-29 06:03 , Processed in 0.062699 second(s), 19 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表