|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?我要加入
x
/* 神经网络遗传算法 */
/*-----------------------------------------------------------------------*\
| |
| Robotics 95 -- Final Course Project |
| |
| By : Ziv Pollack & Omri Weisman |
| |
| NNUGA - Neural Network Using Genetic Algorithms |
| |
\*-----------------------------------------------------------------------*/
/*
* File name : nnuga.c
*
* This program is an implementation of a Neural Network (NN) which learns u
sing
* Genetic Algorithms (GA). It runs from a Tk shell.
*
* It reads points from a file and creates an output file which describes
* points that correspond to lines that seperate the plain into several
* regions, regions where the NN's output will be true, and a regions
* where the NN's output will be false.
*
*/
#include <stdio.h>
#include <math.h>
#include <sys/time.h>
/* NN related */
#define NUM 2 /* Number of input nodes */
#define LIMIT 150 /* Maximum number of inputs the system can handle */
#define SESSIONS 500 /* Number of training sessions that we'll put the syst
em through */
/* GA related */
#define POPS 10 /* Number of populations */
#define SIZE 25 /* Size of vector in the genetic algorithms */
#define MAXPOP 60 /* Size of population */
#define BESTPOP 4 /* Number of individuals taken from the best */
#define SELPOP 8 /* SELPOP-BESTPOP = Number of people selected randomly
on each gen. */
#define NEWPOP 18 /* NEWPOP-SELPOP = Number of new people, created rando
mly on each gen. */
#define MUT1 25 /* MUT1-NEWPOP = Number of mutations in the first muta
tion group */
#define MIXGEN 10 /* Number of generations between population mixing */
typedef struct
{
float p[NUM];
} vector;
/* NN related */
vector test[LIMIT], w1, w2, w3, w4, w5, w6;
int hits[LIMIT], total;
float w7[6];
int b1, b2, b3, b4, b5, b6, b7;
/* GA related */
float pop[POPS][MAXPOP][SIZE];
int score[POPS][MAXPOP];
/*-----------------------------------------------------------------------*\
| |
| Randomize |
| |
\*-----------------------------------------------------------------------*/
randomize()
{
struct timeval tp;
struct timezone tzp;
/* Use time of day to feed the random number generator seed */
gettimeofday( &tp, &tzp);
srandom( tp.tv_sec );
}
/*-----------------------------------------------------------------------*\
| |
| irand( range ) - return a random integer in the range 0..(range-1) |
| |
\*-----------------------------------------------------------------------*/
int irand( range )
int range;
{
return( random() % range );
}
/*-----------------------------------------------------------------------*\
| |
| scalar_mult - multiply two vectors |
| |
\*-----------------------------------------------------------------------*/
float scalar_mult( x, y ) vector x, y;
{
int i;
float s = 0.0;
for ( i = 0 ; i < NUM ; i++ ) s += ( x.p * y.p );
return s;
}
/*-----------------------------------------------------------------------*\
| |
| This function computes the NN's output for a certain input vector. |
| The NN is constructed from 2 layers, first layer has 6 neurons, |
| second layer has 1 neuron. |
| |
\*-----------------------------------------------------------------------*/
int net( x ) vector x;
{
/* First layer */
float a1 = atanpi( scalar_mult( w1, x ) + b1 ) / 1.6; /* atan transfer fu
nction */
float a2 = atanpi( scalar_mult( w2, x ) + b2 ) / 1.6; /* atan transfer fu
nction */
int a3 = ( scalar_mult( w3, x ) + b3 ) > 0; /* hardlim transfer
function */
int a4 = ( scalar_mult( w4, x ) + b4 ) > 0; /* hardlim transfer
function */
float a5 = scalar_mult( w5, x ) + b5 ; /* linear transfer
function */
float a6 = scalar_mult( w6, x ) + b6 ; /* linear transfer
function */
/* Second layer */
float a7 = ( a1*w7[0] + a2*w7[1] + a3*w7[2] + a4*w7[3] +
a5*w7[4] + a6*w7[5] + b7 ) > 0.0; /* hardlim transfer
function */
return(a7);
}
/*-----------------------------------------------------------------------*\
| |
| pop_swap( p, a, b ) - swap two vectors and scores in the population p|
| |
\*-----------------------------------------------------------------------*/
pop_swap( p, a, b )
int p, a, b;
{
int t, i;
/* Swap vector */
for ( i = 0 ; i < SIZE ; i++ )
{
t = pop[p][a];
pop[p][a] = pop[p];
pop[p] = t;
}
/* Swap score */
t = score[p][a];
score[p][a] = score[p];
score[p] = t;
}
/*-----------------------------------------------------------------------*\
| |
| apply( p, i ) - apply the i vector of the population p on the NN |
| |
\*-----------------------------------------------------------------------*/
apply( p, i )
int p, i;
{
/* Get the weights and biases of the neurons from the GA vector */
w1.p[0] = pop[p][0]; w1.p[1] = pop[p][1]; b1 = pop[p][2];
w2.p[0] = pop[p][3]; w2.p[1] = pop[p][4]; b2 = pop[p][5];
w3.p[0] = pop[p][6]; w3.p[1] = pop[p][7]; b3 = pop[p][8];
w4.p[0] = pop[p][9]; w4.p[1] = pop[p][10]; b4 = pop[p][11];
w5.p[0] = pop[p][12]; w5.p[1] = pop[p][13]; b5 = pop[p][14];
w6.p[0] = pop[p][15]; w6.p[1] = pop[p][16]; b6 = pop[p][17];
w7[0] = pop[p][18];
w7[1] = pop[p][19];
w7[2] = pop[p][20];
w7[3] = pop[p][21];
w7[4] = pop[p][22];
w7[5] = pop[p][23];
b7 = pop[p][24];
}
/*-----------------------------------------------------------------------*\
| |
| pop_copy( p1, a, p2, b ) - copy the vector b in the population p2 into |
| the vector a in the population p1. |
| |
\*-----------------------------------------------------------------------*/
pop_copy( p1, a, p2, b)
int p1, a, p2, b;
{
int i;
for ( i = 0 ; i < SIZE ; i++ )
pop[p1][a] = pop[p2];
}
/*-----------------------------------------------------------------------*\
| |
| Initialize the populations |
| |
\*-----------------------------------------------------------------------*/
make_initial_population()
{
int p, i, j;
for ( p = 0 ; p < POPS ; p++ )
{
/* Half population gets values from -1 to 1 */
for ( i = 0 ; i < (MAXPOP/2) ; i++ )
for ( j = 0 ; j < SIZE ; j++ )
pop[p][j] = ((random()&1048575) / 1000000.0 - 0.5) * 2;
/* Half population gets values from -100 to 100 */
for ( i = (MAXPOP/2) ; i < MAXPOP ; i++ )
for ( j = 0 ; j < SIZE ; j++ )
pop[p][j] = ((random()&1048575) / 10000.0 - 50) * 2;
}
}
/*-----------------------------------------------------------------------*\
| |
| Calculate the scores of all the vectors in all the populations |
| |
\*-----------------------------------------------------------------------*/
calc_score()
{
int p, i;
for ( p = 0 ; p < POPS ; p++ )
for ( i = 0 ; i < MAXPOP ; i++ )
{
apply( p, i );
score[p] = check_performance();
}
}
/*-----------------------------------------------------------------------*\
| |
| Sort the populations |
| |
\*-----------------------------------------------------------------------*/
sort_population()
{
int p, i, j, k, best;
/* Use insert sort */
for ( p = 0 ; p < POPS ; p++ )
for ( i = 0 ; i < (MAXPOP-1) ; i++ )
{
best = score[p];
for ( j = (i+1) ; j < MAXPOP ; j++ )
if ( score[p][j] > best )
{
best = score[p][j];
k = j;
}
if ( best > score[p] )
pop_swap( p, i, k );
}
}
/*-----------------------------------------------------------------------*\
| |
| Show (on the standard output) the best scores of all populations |
| |
\*-----------------------------------------------------------------------*/
statistics( generation )
int generation;
{
int p;
if ( generation % MIXGEN == 0 )
printf("-----------------------------\n");
printf(" %4d) First are: ", generation);
for ( p = 0 ; p < POPS ; p++ ) printf("%3d ", score[p][0] );
printf(" (from %d)\n",total);
}
/*-----------------------------------------------------------------------*\
| |
| Generate the next generation in all populations |
| |
\*-----------------------------------------------------------------------*/
make_next_generation( generation )
int generation;
{
int p, i, j, k1, k2, m;
float dev;
for ( p = 0 ; p < POPS ; p++ )
{
/* keep best - BESTPOP */
/* add another group, randomly - (SELPOP-BESTPOP) */
for ( i = BESTPOP ; i < SELPOP ; i++ )
pop_swap( p, i, (irand( MAXPOP - i ) + i) );
/* create new individuals */
for ( i = SELPOP ; i < NEWPOP ; i++ )
for ( j = 0 ; j < SIZE ; j++ )
pop[p][j] = ((random()&1048575) / 100000.0 - 5) * 2;
/* SELPOP to MUT1 will be severe mutations */
for ( i = NEWPOP ; i < MUT1 ; i++ )
{
pop_copy( p, i, p, irand(NEWPOP) );
dev = 1 + ((irand(2000) - 1000 )/ 5000);
pop[p][irand(SIZE)] *= dev;
dev = 1 + ((irand(2000) - 1000 )/ 5000);
pop[p][irand(SIZE)] *= dev;
}
/* MUT2 to MAXPOP will be crossovers */
for ( i = MUT1 ; i < MAXPOP ; i++ )
{
/* Every several generations (set by MIXGEN) there is a cross-over
between different populations. */
pop_copy( p, i, (((generation%MIXGEN)==0) ? irand(POPS) : p), iran
d(NEWPOP) );
j = irand(NEWPOP);
k1 = irand( SIZE - 1);
k2 = irand( SIZE - 1 - k1 ) + k1 + 1;
for ( m = k1 ; m <= k2 ; m++ ) pop[p][m] = pop[p][j][m];
/* Mutate slightly */
dev = 1 + ((irand(2000) - 1000 )/ 50000);
pop[p][irand(SIZE)] *= dev;
}
}
calc_score();
sort_population();
statistics( generation );
}
/*-----------------------------------------------------------------------*\
| |
| Return the number of cases for which the NN returns the correct value |
| |
\*-----------------------------------------------------------------------*/
check_performance()
{
vector x;
int j, count=0;
for ( j = 0 ; j < total ; j++ )
{
x = test[j];
if ( net(x) == hits[j] )
count++;
}
return count;
}
/*-----------------------------------------------------------------------*\
| |
| Get data (read input file) |
| |
\*-----------------------------------------------------------------------*/
int get_data()
{
char* FileName = "/tmp/nn-input";
FILE *fd;
int i, posnum, negnum;
float x,y;
/* opens the file */
if ( (fd = fopen(FileName,"r")) == NULL )
{
printf ("no-input-file");
exit(10);
}
/* Total number of input values */
total = 0;
/* read the positive examples */
fscanf( fd, "%d", &posnum);
if (posnum > LIMIT)
{
printf("Error");
exit(20);
}
for ( i = 0 ; i < posnum ; i++ )
{
fscanf( fd, "%f %f", &x, &y);
test[ total ].p[0] = x / 1000;
test[ total ].p[1] = y / 1000;
hits[ total++ ] = 1; /* 1 for positive examples */
}
/* read the negative examples */
fscanf( fd, "%d", &negnum);
if ((negnum+total) > LIMIT)
{
printf("Error");
exit(21);
}
for ( i = 0 ; i < negnum ; i++ )
{
fscanf( fd, "%f %f", &x, &y);
test[ total ].p[0] = x / 1000;
test[ total ].p[1] = y / 1000;
hits[ total++ ] = 0; /* 0 for negative example */
}
fclose( fd );
return (0) ;
}
/*-----------------------------------------------------------------------*\
| |
| best_pop - Find the population with the best solution |
| |
\*-----------------------------------------------------------------------*/
int best_pop()
{
int i, p, best = 0;
for ( i = 0 ; i < POPS ; i++ )
if ( score[0] > best )
{
best = score[0];
p = i;
}
return(p);
}
/*-----------------------------------------------------------------------*\
| |
| charmap - draw a charmap showing the NN's behaviour |
| |
\*-----------------------------------------------------------------------*/
charmap( p )
int p;
{
int i, j, result;
vector x;
apply( p ,0 );
for ( i = 0 ; i < 350 ; i++ )
{
for ( j = 0 ; j < 350 ; j++ )
if ( (i%12==0) && (j%6==0) )
{
x.p[0] = j/1000.0;
x.p[1] = i/1000.0;
result = net( x );
printf("%c", (result==1 ? '+' : '.' ) );
}
if ( i%12==0 ) printf("\n");
}
}
/*-----------------------------------------------------------------------*\
| |
| make_output - create the output file |
| |
\*-----------------------------------------------------------------------*/
make_output(p)
int p;
{
int i, j, result, oldresult, start;
vector x;
char* FileName = "/tmp/nn-output";
FILE *fd;
printf("\n%s\n", (score[p][0]!=total ? "Failed." : "Success" ) );
apply( p, 0 );
printf("Writing output file...\n");
/* Open the file */
if ( (fd = fopen(FileName,"w")) == NULL )
{
printf ("Can't open output file");
exit(10);
}
/* line scheme */
for ( i = 0 ; i < 350 ; i++ ) /* Scan horizontally */
{
result = 0;
for ( j = 0 ; j < 350 ; j++ )
{
oldresult = result;
x.p[0] = j/1000.0;
x.p[1] = i/1000.0;
result = net( x );
if ( oldresult != result )
fprintf( fd, "%d %d ", j, i );
}
}
for ( j = 0 ; j < 350 ; j++ ) /* Scan vertically */
{
result = 0;
for ( i = 0 ; i < 350 ; i++ )
{
oldresult = result;
x.p[0] = j/1000.0;
x.p[1] = i/1000.0;
result = net( x );
if ( oldresult != result )
fprintf( fd, "%d %d ", j, i );
}
}
fclose( fd );
printf("Done!\n");
}
/*-----------------------------------------------------------------------*\
| |
| Main |
| |
\*-----------------------------------------------------------------------*/
main()
{
int generation, j, p, best, done = 0;
float px, py, px1, py1;
randomize();
get_data(); /* Read input from file */
make_initial_population();
calc_score();
sort_population();
/* Educate the net */
generation = 0;
while ( (done != 1 ) && ( generation++ < SESSIONS ) )
{
make_next_generation( generation );
p = best_pop();
/* Show a charmap every 50 generations */
if ( generation % 50 == 0 ) charmap(p);
if ( score[p][0] == total )
done = 1;
}
/* return results */
make_output(p);
} |
-
评分
-
1
查看全部评分
-
|