声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 1997|回复: 5

[综合讨论] 关于polyeig这个函数

[复制链接]
发表于 2007-5-23 08:41 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?我要加入

x
我在编程时需要用到polyeig这个函数,可是help中没有具体说明。有没有那位高手帮忙解释一下它的用法,我碰到的问题是,矩阵A0,A1.....Ap中有个零矩阵。我试验了一下,解出很多零解,可我的是特征值问题,不可能出现零解的,请高手帮帮忙吧

[ 本帖最后由 eight 于 2007-5-24 09:32 编辑 ]
回复
分享到:

使用道具 举报

发表于 2007-5-23 08:46 | 显示全部楼层
polyeig
Polynomial eigenvalue problem

Syntax
[X,e] = polyeig(A0,A1,...Ap)
e = polyeig(A0,A1,..,Ap)
[X, e, s] = polyeig(A0,A1,..,AP)


Description
[X,e] = polyeig(A0,A1,...Ap) solves the polynomial eigenvalue problem of degree p



where polynomial degree p is a non-negative integer, and A0,A1,...Ap are input matrices of order n. The output consists of a matrix X of size n-by-n*p whose columns are the eigenvectors, and a vector e of length n*p containing the eigenvalues.

If lambda is the jth eigenvalue in e, and x is the jth column of eigenvectors in X, then (A0 + lambda*A1 +... + lambda^p*Ap)*x is approximately 0.

e = polyeig(A0,A1,..,Ap) is a vector of length n*p whose elements are the eigenvalues of the polynomial eigenvalue problem.

[X, e, s] = polyeig(A0,A1,..,AP) also returns a vector s of length p*n containing condition numbers for the eigenvalues. At least one of A0 and AP must be nonsingular. Large condition numbers imply that the problem is close to a problem with multiple eigenvalues.

Remarks
Based on the values of p and n, polyeig handles several special cases:

p = 0, or polyeig(A) is the standard eigenvalue problem: eig(A).

p = 1, or polyeig(A,B) is the generalized eigenvalue problem: eig(A,-B).

n = 1, or polyeig(a0,a1,...ap) for scalars a0, a1 ..., ap is the standard polynomial problem: roots([ap ... a1a0]).


If both A0 and Ap are singular the problem is potentially ill-posed. Theoretically, the solutions might not exist or might not be unique. Computationally, the computed solutions might be inaccurate. If one, but not both, of A0 and Ap is singular, the problem is well posed, but some of the eigenvalues might be zero or infinite.
 楼主| 发表于 2007-5-23 08:49 | 显示全部楼层
谢谢你,就是因为help中没有我要的东西。能不能麻烦你用中文解释一下呀
发表于 2007-5-23 09:13 | 显示全部楼层
呵呵
多项式特征值问题
应该能看个差不多吧
 楼主| 发表于 2007-5-23 15:17 | 显示全部楼层
你帮忙试试吧。。有个为零怎么解呀
 楼主| 发表于 2007-5-24 08:18 | 显示全部楼层
请高手帮忙看看吧,,程序进行不下去了
您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2025-1-16 03:55 , Processed in 0.077575 second(s), 17 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表