声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 3566|回复: 5

[分形与混沌] [转帖]确定性系统中的混沌现象的研究

[复制链接]
发表于 2005-8-31 01:00 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?我要加入

x
1.古代“浑沌”思想和牛顿的决定论
  不论中国还是西方,“混沌”(chaos,又称“浑沌”)概念古已有之。面对浩瀚无垠的宇宙和繁纷多变的自然现象,古人只能凭借直觉对它进行模糊、整体的想象和猜测,逐步产生了混沌的概念。中国古代所说的“混沌”,一般是指天地合一、阴阳未分、氤氲渺蒙、万物相混的那种整体状态。它既含有错综复杂、混乱无序、模糊不清的意思,又有内在地蕴涵着同一和差异、规则和杂乱、通过演化从“元气未分”的状态产生出五光十色、多姿多彩的现实世界的丰富内涵。《老子》中所说“有物混成,先天地生”,其实就是混沌。汉代王充的《论衡·谈天篇》说:“元气未分,浑沌为一”;汉代《易纬·乾凿度》云: “混沌者,言万物相混成而未相离”;又云:“太易者,未见气也;太初者,气之始也;太始者,形之始也;太素者,质之始也;气、形、质具而未相离,谓之混沌”。这些论述都强调了混沌是宇宙初始物质未被分化的一种无序的元气统一体。战国时期的伟大诗人屈原在他的《天问》中精彩地描绘了这种混沌状态:
  曰遂古之初,谁传道之?上下未形,何由考之?冥昭瞢暗,谁能极之?冯翼惟象,何以识之?明明暗暗,惟时何功?阴阳三合,何本何化?……
  这也把宇宙的初始状态描绘为天地未形、浑浑沌沌、动荡不定、明暗不分、阴阳渗合的形象。
  但是,在古人看来,浑沌并不简单地等同于混乱和无序,它是万物混成尚未分离的状态,它是统一的整体,它本身就包含着差异和多样性,是秩序和无秩序、和谐与不和谐的统一体。浑沌先于宇宙,浑沌孕育着宇宙,浑沌产生出宇宙。按照《易纬·乾凿度》的说法,这个演化过程就是
  太易→太初→太始→太素→混沌→天地……
  “天地”才是现实的宇宙。
  在古埃及和巴比伦的传说里,都提出了世界起源于混沌的思想。古希腊称“原始混沌”为“卡俄斯”,说卡俄斯生于万物之先,它生下大地(“该亚”)、地狱(“塔尔塔洛斯”)和爱情(“厄洛斯”),大地又生出天(“乌利诺斯”)和海(“蓬托斯”)。这也是说世界万物都是从混沌中分离出来的。在《圣经》“创世纪”中说,起初神创造了天地,大地是空虚混沌,神灵运行于黑暗的深渊中,神说“要有光”,于是就有了光;神把光暗分开,于是就有了晨昏昼夜。这就是“创世”的第一天。这里借“神”的外衣所编织的动人神话,都反映了古人关于世界起源的共同思想:世界产生之前的自然状态是混沌,万物借分离之力从混沌中演化出来。但是,即使古人,也力图揭开浩阔苍茫的宇宙的奥秘,寻找变幻莫测的大自然背后的秩序,从混沌中发现规则性。世界各地的古文明中,都产生了计算季节的精奥历法,都出现了预测日月食的天文律条。
  伟大的文艺复兴运动和哥白尼日心说的提出,激发起人们探索大自然的勇气和信心,近代自然科学诞生了。1687年,伟大的牛顿(Newton,Isaac 1642~1727)出版了他的巨著《自然哲学的数学原理》,以机械运动的三个基本定律和万有引力定律为公理基础,确立了一个揭示“万物的至理”、结构 “世界的体系”的严整的经典力学理论体系。这个理论简单而精确,普适而优美,对地面物体的各种复杂运动和太阳系内各个天体的长短周期运动做出了统一的解释,包括落体运动,弹道曲线,波的传播,光的折射,海洋潮汐,流体涡旋,行星轨道,月球岁差,彗星的行踪,双星的光变等等。牛顿的理论获得了意想不到的成功,世界一下子变得秩序井然。
  以牛顿力学为旗帜的科学革命,导致了把宇宙看作是一个巨大的精密机械,或者说就像一架精确运行的“钟表机构”。因为牛顿力学的核心是牛顿第二定律,它是一个二级微分方程;这个方程的解,即物体的运动轨道,完全由两个初始条件唯一地决定。就是说,只要知道了物体在某一时刻的运动状态以及作用于这个物体的外部的力,就可以准确地确定这个物体以往和未来的全部运动状态。
  这样,牛顿力学必然导致一个机械决定论的结构,即认为所有的自然现象和自然过程,都只能按照机械的必然性发生和进行。根据物体间的相互作用和力学的基本定律,从运动的初始条件出发,就可以巨细不遗地得出宇宙中一切物体的全部运动状态。这是一个数量的世界,一个可以利用数学方法进行计算的世界。
  对牛顿理论的最辉煌的证实,是由18世纪天体力学做出的。1705年,牛顿的挚友哈雷(Halley,Edmund1656~1742)根据他对1682年一颗彗星轨道的观测数据,运用牛顿的天体运动理论进行了计算,预言它将在1758年末再次出现。1743年,法国科学家克雷洛(Clairault,A.C.1713~1765)同样用牛顿的理论,计算了遥远的木星和土星的摄动作用,指出这颗彗星的出现要稍作推迟,它经过近日点的时间在1759年4月。果然,这颗彗星在1759年的春天又映辉于夜空。这就是著名的哈雷彗星。这是人类历史上第一次在54年前就准确预言了的一次天体运动现象,极大地增强了对以牛顿理论为代表的确定性因果规律的信心。
  对这个经典确定论的信心,充分体现在1812年法国科学家拉普拉斯(Laplace,P.S.M.1749~1827)关于一个高超“智者”的设想上。他写道:①
  假设有一位智者,它能知道在任一给定时刻作用于自然界的所有的力以及构成世界的一切物体的位置。假定这位智者的智慧高超到有能力对所有这些数据做出分析处理,那么它就能将宇宙中最大的天体和最小的原子的运动包容到一个公式中。对于这个智者来说,再没有什么事物是不确定的了,过去和未来都历历在目地呈现在它的面前。
  拉普拉斯的设想实际上是提出了一个令人敬畏的命题:整个宇宙中物质的每一个粒子在任一时刻的位置和速度,完全决定了它未来的演化;宇宙沿着唯一一条预定的轨道演变,混沌是不存在的;随机性只是人类智力不敷使用时的搪塞之语。
2.庞加莱关于三体问题的开创性研究
  科学认识的步伐,走出一条“之”字形路线:“混沌”让位于“规则”——这是牛顿所建立的伟大功绩;而“规则”又产生出新形式的“混沌”。迈出这一步伐的第一人,是伟大的法国科学家庞加莱(1854~1912)。
  庞加莱被誉为是“一只脚站在19世纪,一只脚站在20世纪”的跨世纪天才学者,“是最后一位传统科学家,也是第一位现代科学家”。这位蓄胡须、戴眼镜、和蔼可亲、不修边幅、带着心不在焉的糊涂外表的沉思者,却是一位科学上的集大成者,在数学、天体力学、物理学和科学哲学等领域,都做出了杰出的贡献。他通晓他的时代的全部数学,在每一个重要分支里都做出了富有创造性的工作。这使他成为世界数学界无可争辩的领袖。正是这位科学巨擘,在确定论思想浓重笼罩着全部科学界的时候,却把智慧的眼光投向早被驱赶出科学园地的混沌深渊。他是在研究天体力学,特别是“三体问题”时发现混沌的。1887 年,瑞典国王奥斯卡二世(1829~1907)悬赏2500克朗,征求天文学中一个重要问题的答案。这个问题就是“太阳系是稳定的吗?”其实这是牛顿本人早就提出来的一个老问题了。牛顿以当时已观测到的木星和土星运动的不规则性以及彗星以极扁的轨道横穿所有行星的公转轨道所可能带来的干扰作用为依据,提出了太阳系的运动可能会陷入紊乱的担心。此后不少科学家都对这个问题进行过探索。直到1784年,拉普拉斯根据万有引力理论证明,太阳系是一个完善的自行调节的机械机构,行星之间的相互影响和彗星等外来天体所造成的摄动,最终都会自行得到改正。所以,太阳系作为一个整体是稳定的,它将无限期地继续做着目前的周期运动。但是看来,拉普拉斯的答案并没有消除科学界的这个疑虑,没有阻止100年后瑞典国王的悬赏征文。
  庞加莱自然向奥斯卡国王的难题发起了进攻。但是这个问题是太困难了,它涉及到了怎样研究复杂动力系统的稳定性这个深刻的问题。连庞加莱这样的天才学者,也未能彻底攻克它。但是,他却为了做这一工作而创立了一个新的数学分支——拓扑学,并大大推进了人们对这个历史难题的认识。他因此获得了这项奖金。
  在太阳系中,包含着十多个比月球大的巨大天体,这是造成解题困难的根本原因。如果太阳系仅仅由太阳和地球组成,这就是一个“二体系统”,问题则很简单,牛顿早已完全解决了它们的运动问题。它们的运动是简单而规则的周期运动,太阳和地球将围绕一个公共质心、以一年为周期永远运转下去;或者稍做简化地说,地球将以太阳为一个焦点,周而复始地沿椭圆轨道绕转。然而,当增加一个相当大的天体后,这就成了一个“三体系统”,它们的运动问题就大大复杂化了,要彻底解决这个问题,几乎是不可能的。对短时间内的运动状态,可以用数值计算的方法来确定;但是由于根据牛顿力学所列出的方程组不能解析地求解,所以系统长时间的运动状态是无法确定的。
  为了减少解决“三体问题”的难度,庞加莱着眼于美国数学家希尔(Hill,George William 1838~1914)提出的一个极为简化的三体系统,即“希尔约化模型”。三体中有一个物体的质量非常小,它对其它两个天体不产生引力作用,就像由海王星、冥王星和一粒星际尘埃组成的一个宇宙体系一样。这两颗行星就像一个“二体系统”一样绕着它们的公共质心做周期运动;但这颗尘埃却受到两颗行星万有引力的作用,在两颗行星共同形成的旋转着的引力场中做复杂的轨道运动。这种运动不可能是周期的,也不可能是简单的,看上去简直是乱糟糟一团(图 2)。
screen.width-333)this.width=screen.width-333">
  为了用几何方法直观地描绘运动的情况,可以以描述系统状态的状态参量为坐标张成的“相空间”来描绘运动过程。某一时刻系统的状态在相空间里用一个点表示;系统状态随时间的变化,即系统运动方程的解,对应于相空间的一条曲线,称为“相轨道”;如果物体做周期运动,它的相轨道就是一条闭合曲线;如果曲线不闭合,则表示物体的运动是非周期的。但是,为了确定系统的运动是不是周期性的,与其自始至终地跟踪系统运动的全过程,不如只观察系统的相轨道是否总会通过同一相点。设想通过相空间中一点A(初始状态)作一个横截面(图3),如果系统的相轨道总在同一点A穿过截面,那么系统的运动就是周期性图3用庞加莱截面考察运动情况:的;相反,如果系统的相曲线1表示周期运动轨道每次都在不同点穿曲线2为非周期运动过这个截面,它的运动就是非周期的。这个截面现被称为“庞加莱截面”,它把对连续曲线(相轨道)的研究简化为对点的集合的研究,相当于对系统的全部运动过程进行不连续的抽样检验,从而简化了检测工作。
screen.width-333)this.width=screen.width-333">  
  庞加莱把他的截面方法应用于“希尔约化模型”的研究,以观察尘埃粒子的运动。庞加莱震惊了,他发现尘粒的运动如此复杂而且违反直觉。它的轨线多次穿过截面所形成的交点竟连缀成无穷多交点的“栅栏”(图4,现称为“同宿栅栏”)。他写道:
screen.width-333)this.width=screen.width-333">  
  当人们试图描画由这两条曲线和它们的无穷次相交(每一次相交都对应于一个双渐近解)构成的图形时,这些相交形成一种格子、丝网或无限密集的网栅结构;这两条曲线从不会自相交叉,但为了无穷多次穿过丝网的网节,它们必须以一种很复杂的方式折叠回自身之上。这一图形的复杂性令人震惊,我甚至不想把它画出来。没有什么能给我们一个三体问题复杂性的更好的概念了①。
  从截面上一点出发的系统,经过一个过程后,当它再穿过截面时,却在另一点交于庞加莱截面,简直无法预言它下一次将从哪一点穿过截面;实际上系统是以无规的点的序列频频穿过庞加莱截面的。这就是混沌,庞加莱在“三体问题”中发现了混沌!这一发现表明,即使在“三体系统”,甚至是极为简化的“希尔约化模型”中,牛顿力学的确定性原则也受到了挑战,动力系统可能出现极其惊人的复杂行为。并不像人们原来认为的那样,动力系统从确定性的条件出发都可以得出确定的、可预见的结果;确定性动力学方程的某些解,出现了不可预见性,即走向混沌。
  其实,在庞加莱动手解决奥斯卡国王的难题的同一年,即1887年,数学家布伦斯(Bruns,H.)就已证明,三体问题的9个自由度18个二阶微分方程,只有10个运动积分,即3个动量积分,3个角动量积分,3个关于质心运动的积分和1个能量积分。1890年,庞加莱将布伦斯的结论推广到有摄动参数的情况;1892年在他的三卷本《天体力学新方法》的第一卷第四章中,他对这个定理做出了一般表述:在通常的保守问题中,经典力学正则方程除了满足能量积分外,不满足其它任何解析、一致的积分。庞加莱的一般性结论,实质上是指出,可积系统是极少的;许多行为很规则的系统,当受到扰动后,可能出现不连续性,其参数或初始条件的微小变化,就可能引起复杂的、甚或是性质上的变化。
  庞加莱的工作提出了经典力学的确定性原则的适用限度的重大问题,留下了极富启发性的论断和猜想。不过,混沌问题是太复杂了,庞加莱的时代还不具备揭示和描述混沌现象的足够的知识储备和数学工具。虽然凭着他超人的几何直觉对混沌的复杂性有所洞察,但是他并不真的是“不想”画出他所发现的“同宿栅栏”,而是“无法”把它画出来。这是只有用电子计算机技术才能处理的复杂几何图象。庞加莱的思想是太超前于他的时代了,所以他的发现在半个多世纪里并未受到科学界的重视;牛顿力学确定性的帷幕,仍然厚厚地遮蔽着混沌广阔富饶的研究领域。
3.伯克霍夫的工作与KAM定理
  美国数学家伯克霍夫(Birkh off,George 1884~1944)是20世纪初少数几个认识到庞加莱动力系统研究工作的重要性的人物之一,他继承和发展了庞加莱的工作。
  伯克霍夫把庞加莱截面方法用于探索哈密顿系统的一般行为。他发现微分方程的性质取决于正则级数的收敛性。如果正则级数是收敛的,则微分方程的解位于N维不变环面上。但实际上级数的收敛、发散与否取决于振幅的大小。当考虑非线性作用时,椭圆不动点周围的不变环面有些遭到破坏,有些继续存在但有点变形。
  1932年,伯克霍夫证明,对应于不变环面的消失,存在不稳定区域,它可以被一条扭曲映射下的不变曲线所包拢,而区域内并无环绕原点的不变曲线。他实际上已经证明,任意接近外边界的点,在映射作用下可以任意接近内边界,反之亦然。在研究不稳定区的结构时,伯克霍夫让一个收缩性的扭曲映射作用于两条不变曲线之间的不稳定区域,结果不稳定区域被映射到一个更小的子区域中;映射的迭代最终把原区域变成了一个面积为零、结构极其复杂的极限集合,位于原区域中的点的轨迹都收敛到这个集合中去了。
  伯克霍夫实际上已经发现了“混沌行为”和现在所说的“奇怪吸引子”的实例,他当时称之为“奇特曲线”。更值得提出的是,他已经意识到这种行为是动力系统的通有行为。除伯克霍夫等极少数人之外,几乎没有人沿着庞加莱的道路前进。直到20世纪60年代以后,对动力系统的研究才有了长足的进展。
  1960年前后,前苏联数学家柯尔莫果洛夫(Kolmogorov,A.N.)、阿诺德(Arnold,V.I.)和莫塞尔(Moser,J.)提出并证明了以他们的姓氏的字头命名的KAM定理。这个定理的基本思想是1954年柯尔莫果洛夫在阿姆斯特丹举行的国际数学会议上宣读的《在具有小改变量的哈密顿函数中条件周期运动的保持性》短文中提出的。后来他的学生阿诺德做出了严格的证明,莫塞尔又推广了这些结果。
  按照分析力学方法,N个自由度系统的哈密顿函数是H=H(p1,p2……pN;q1,q2……qN),系统的运动由哈密顿正则方程
screen.width-333)this.width=screen.width-333"> 
  确定。如果能够找到一系列正则变换,从广义动量p1,p2……pN和广义坐标q1,q2……qN变到另一套作用-角度变量 J1,J2……JN和θ1,θ2……θN,使得利用新变量表示的哈密顿函数只依赖于前一半变量J1,J2……JN,而与θ1,θ2……θN无关,则这个力学系统就是完全可解的,即为一可积系统。因为这意味着这个系统的行为可化简,归约为N维环面上的条件周期运动。相反,如果找不到一种变换,使得哈密顿方程只包含作用变量,则系统是不可积的。实际上,对于多数保守系统,是无法找到这种正则变换的。
  KAM定理是关于近可积系统的一个重要的、一般性结论,有十分重要的意义。假定系统的哈密顿函数分为两部分
回复
分享到:

使用道具 举报

 楼主| 发表于 2005-8-31 01:02 | 显示全部楼层
  其中H0部分是可积的,V是使H变得不可积的扰动,只要ε很小,这就是一个弱不可积系统。KAM定理断言,在扰动较小,V足够光滑,离开共振条件一定距离三个条件共同成立下,对于系统的大多数初始条件,弱不可积系统的运动图象与可积系统基本相同。可积系统的运动限制在由N个运动不变量决定的 N维环面上,而弱不可积系统的绝大多数轨道仍然限制在稍有变形的N维环面上,这些环面并不消失,只有轻微的变形,称为不变环面。不过,只要有非零的扰动,总会有一些轨道逃离不变环面,出现不稳定、随机性的特征;但只要满足KAM定理的条件,这些迷走轨线是零测度的,不代表系统的典型行为。
  大量的计算机数值实验表明,破坏KAM定理的任何一个条件,都会促使迷走轨线增多,使运动的不规则性和随机性增大,最终导致混沌运动。当然,这运动所遵循的仍然是决定性的牛顿力学方程式。所以,KAM定理以一个限制性原理的形式,从反面泄露了有关牛顿力学面目的真实信息。它暴露出,确定性的动力系统,只要精确地从同一点出发,其运动就是一条确定的轨道;但是只要初始条件有无论多么微小的变化,其后的运动就会变得无序和混乱,就如同掷骰子一样,是随机和不可预测的。这就是牛顿力学的内禀随机性。
4.洛仑兹关于气象预报的研究
  混沌研究上的一个重大突破,是在天气预报问题的探索中取得的。
  1922年,英国物理学家和心理学家理查孙(Richardson,LewisFry 1881~1953)发表了一篇题为《用数值方法进行天气预报》的文章。在文章的末尾,他提出了一个异想天开的幻想:在一个大建筑内,集聚一大批长于计算的工作者,在统一指挥下相互协调地对影响天气变化的各种数据进行计算。他估计,为了使天气预报和实际的天气变化达到同步,大约需要64000个熟练的计算者。他设想,在遥远的将来,有朝一日或许有可能发展出比天气变化还要快的计算手段,从而使天气预报梦想成真。真是先知之见,不到30 年,电子计算机就出现了,并且成功地用于天气预报。在牛顿力学确定论思想的影响下,当时科学家们对天气预报普遍持有这样乐观的看法:气象系统虽然复杂异常,但仍然是遵循牛顿定律的确定性过程。在有了电子计算机这种强有力的工具之后,只要充分利用遍布全球的气象站、气象船、探空气球和气象卫星,把观测的气象数据(气压、温度、湿度、风力等)都及时准确地收集起来,根据大气的运动方程进行计算,天气变化是可以做出精确预报的。既然天文学家能够根据牛顿定律,用铅笔和计算尺计算出了太阳系的未来,预见了哈雷彗星的出没以及海王星和冥王星的存在,勾划出了人造卫星和洲际导弹的准确轨迹,那么为什么对于风和云就做不到呢?只要有一台功能高超的计算机来充任拉普拉斯设想的“智者”,天气的变化就会在人们精确的预言中。计算机之父约翰·冯·诺意曼就认为气象模拟是计算机的理想的用武之地。他甚至认为,天气状况不仅可以预报,而且是可以人工控制和改变的。美国气象学家、麻省理工学院的洛仑兹 (Lorenz,Edward)最初也接受了这种观点。1960年前后,他开始用计算机模拟天气变化。
  洛仑兹有良好的数学修养,他本想成为一个数学家,只是由于第二次世界大战的爆发,他成了空军气象预报员,使他成了一位气象学家。比起庞加莱来,洛仑兹的条件是太优越了。他拥有一台“皇家马可比”计算机,它是用真空管组成的,虽然运算速度还不算快,但在当时已经是很了不起的了。洛仑兹把气候问题简化又简化,提炼出影响气候变化的少而又少的一些主要因素;然后运用牛顿的运动定律,列出了12个方程。这些方程分别表示着温度与压力、压力与风速之间的关系等等。他相信,运动定律为数学确定性架起了桥梁,12个联立方程可以用数值计算方法对气象的变化做出模拟。开始时,洛仑兹让机器每分钟在打印机上打出一串数字,表示出一天的气象,包括气压的升降,风向的变化,气温的起伏等。洛仑兹把这些数据与他心目中的预测相对比,感觉到某种熟悉的东西一次一次地重复出现。气温上升又下降,风向向北又向南,气压升高又降低;如果一条曲线由高向低变化而中间没有隆起的部分,随后就会出现两个隆起部分。但是他又发现,这种重复决不是精确的,一次与一次绝不完全吻合。这个结果已经开始向洛仑兹透露着某种奥秘了。
  1961年冬季的一天,洛仑兹用他的计算机算出了一长段数据,并得出了一个天气变化的系列。为了对运算结果进行核对,又为了节省点时间,他把前一次计算的一半处得到的数据作为新的初始值输入计算机。然后他出去喝了杯咖啡。一个小时后当他又回到计算机旁的时候,一个意想不到的事情使他目瞪口呆了,新一轮计算数据与上一轮的数据相差如此之大,仅仅表示几个月的两组气候数据逐渐分道扬镳,最后竟变得毫无相近之处,简直就是两种类型的气候了。开始时洛仑兹曾经想到可能是他的计算机出了故障,但很快他就悟出了真相:机器没有毛病,问题出在他输入的数字中。他的计算机的存储器里存有6位小数,0.506127。他为了在打印时省些地方只打出了3位0.506。洛仑兹原本认为舍弃这只有千分之一大小的后几位数无关紧要;但结果却表明,小小的误差却带来了巨大的“灾难”。
  为了仔细看一下初始状态原本十分相同的气候流程,如何越来相差越大,洛仑兹把两次输出的变化曲线打印在两张透明片上,然后把它们重叠在一起(图5)。一下子就清楚地看出来,开始时的两个隆峰还很好地相重叠,但到第三个和第四个隆峰时,就完全乱套了。这个结果从传统观点看来是不可理解的。
  因为按照经典决定性原则,初始数据中的小小差异只能导致结果的微小变化;一阵微风不会造成大范围的气象变化。但是洛仑兹是从事天气预报的,他对长期天气预报的失败是有深切感受的。这个离奇古怪的计算结果与他的经验和直觉是完全相符的。所以他深信他的这些方程组和计算结果揭露了气象变化的真实性质。他终于做出断言:长期天气预报是根本不可能的!他甚至有些庆幸地说:“当然,我们实在也不曾做准过气象的长期预报,而现在好了,我们找到了开脱!”“对于普通人来说,看到我们可以在几个月前就很准地预报了潮汐,便会问:为什么对大气就不能准确预报呢?确实,大气虽然是一个与潮汐不同的系统,但支配它们的定律的复杂程度却是差不多的。但我认为,任何表现出非周期性态的物理系统,都是不可预测的。”①事实正是这样,即使在今天,世界上最好的天气预报也只能一天可靠,超过两三天,就只是猜测。
  洛仑兹是个穿着气象学家外衣的数学家,他很快看出了气候变化不能精确重演与长期天气预报的不可能二者之间存在着一种必然的联系。用数学语言来说,就是“非周期性”与“不可预见性”之间的联系。气象系统是不断重复但又从未真正重复的,这叫做“非周期系统”。如果气候的变化是严格的周期性的,即某一时刻各个地方的压力、温度、湿度、每一片云、每一股风都和此前某一时刻的情况完全一样,那么这一时刻以后的天气变化也将和此前那一时刻以后的天气变化完全相同,于是天气就会循环往复地永远按照这个变化顺序反复重现,精确的天气预报也就成了平淡无奇的事情了。
  基于这种认识,洛仑兹就把气候问题丢在一边,专心致力于在更简单的系统中去寻找产生复杂行为的模式。他抓住了影响气候变化的重要过程,即大气的对流。受热的气体或液体会上升,这种运动就是对流。烈日烘烤着大地,使地面附近的空气受热而上升;升到高空的空气放热变冷后,又会从侧面下降。雷雨云就是通过空气的对流形成的。如果对流是平稳的,气流就以恒定的方式渐渐上升;如果对流是不平稳的,大气的运动就复杂化了,出现某种非周期性态。这与天气变化有某种类似。于是,洛仑兹就从表征着流体运动过程的纳维-斯托克斯方程组出发,经过无量纲化处理并做傅立叶展开,取头一、二项,得到傅立叶系数满足的一组常微分方程。与大气的实际对流运动相比,这组方程是大为简化了,它只是抽象地刻划了大气真实运动的基本特点,既考虑了流动的速度,又考虑了热的传输,与真实的大气运动是大体类似的。他建立的三个方程是dx/dt=10(y-x)
  dy/dt=28x- y-xz
  dz/dt=(8/3)z+xy
  x、y、z是三个主要变量,t是时间,d/dt是对时间的变化率;常数28对应于不平稳对流刚开始后系统的状态。这就是1963年洛仑兹发表在《气象科学杂志》20卷第2期上的题为《确定性非周期流》中所列出的方程组。由于其中出现了xz、xy这些项,因而是非线性的,这意味着它们表示的关系不是简单的比例关系。一般地说,非线性方程组是不可解的,洛仑兹的方程组也是不能用解析方法求解的,唯一可靠的方法就是用数值方法计算解。用初始时刻x、y、z的一组数值,计算出下一个时刻它们的数值,如此不断地进行下去,直到得出某一组“最后”的数值。这个方法叫做“迭代”,即反复做同样方法的计算。用计算机进行这种“迭代”运算是很容易的。洛仑兹把x、y、z作为坐标画出了一个坐标空间,描绘了系统行为的相轨道,他吃惊地发现,画出的图显示出奇妙而无穷的复杂性(图6)。这是三维空间里的双重绕图,就像是有两翼翅膀的一只蝴蝶;它意味着一种新的序,轨线被限制在某个边界之内,决不会越出这个边界;但轨线决不与自身相交,在两翼上转来转去地环绕着。这表示系统的性态永远不会重复,是非周期性的,从这一点来说,它又纯粹是无序的。
  正如这篇论文的标题所表示的,从确定性的方程和确定的初始状态(x、y、z的初始值)出发,经过多次迭代后,却得出了非周期性态的结果。这就是混沌!一切有关混沌的丰富内容,都包含在这幅奇妙的画图中了。
  现在就可以说明什么是现代科学意义上的“混沌”概念了。1986年在伦敦召开的一个关于混沌问题的国际会议上,提出了下述的定义: “数学上指在确定性系统中出现的随机性态”。传统观点认为,确定性系统的性态受精确的规则支配,其行为是确定的,可以预言的;随机系统的性态是不规则的,由偶然性支配,“随机”就是“无规”。这样看来,“混沌”就是“完全由定律支配的无定律性态”,这真是一个大自然的“悖论”。
5.“蝴蝶效应”和“斯梅尔马蹄”
  无规性的源泉在于初始条件的选择。一个动力系统的行为或运动轨道决定于两个因素。一个是系统的运动演化所遵从的规律,如牛顿定律;一个是系统的初始状态,即初始条件。经典力学指出,一个确定性系统在给定了运动方程后,它的轨道就唯一地取决于初始条件,一组初始值只有一条轨道,这就是系统行为对初值的依赖性。
  但是,任何测量都是有误差的,所以任何时候都不可能绝对精确地测定初始值。实验上给出的初值都只能是近似的。这个误差对系统的行为会不会有严重影响呢?经典力学断言,系统的行为或运动轨道对初值的依赖是不敏感的,知道了一个系统近似的初始条件,系统的行为就能够近似地计算出来。这就是说,从两组相接近的初值描绘出的两条轨道,会始终相互接近地在相空间里偕游并行,永远不会分道扬镳,泛泛的小影响不会积累起来形成一种大的效应。
  混沌研究却粉碎了传统科学中这种对近似性和运动的收敛性的信仰。处在混沌状态的系统,或者更一般地说对于一个非线性系统,运动轨道将敏感地依赖于初始条件。洛仑兹已经发现,从两组极相邻近的初始值出发的两条轨道,开始时似乎没有明显的偏离,但经过足够长的时间后,就会呈现出显著的差异来(图5)。这就是说,初值的微小差异,在运动过程中会逐渐被放大,终会导致运动轨道的巨大偏差,以至于这种偏差要多大就有多大。在科学实验中,一种变化过程可能有一个临界点,在这一点上,一个微小的扰动可能被放大成一个重大的变化。而在混沌中,这种点无处不在,确定性系统初值的微小差异导致了系统整体的混沌后果。
  小的误差竟能带来巨大的灾难性后果,这一点早在1908年就被目光敏锐的庞加莱洞察到了。他在他的名著《科学与方法》中写道:
  我们觉察不到的极其轻微的原因决定着我们不能不看到的显著结果,于是我们说这个结果是由于偶然性。如果我们可以正确地了解自然定律以及宇宙在初始时刻的状态,那么我们就能够正确地预言这个宇宙在后继时刻的状态。不过,即使自然定律对我们已无秘密可言,我们也只能近似地知道初始状态。如果情况容许我们以同样的近似度预见后继的状态,这就是我们所要求的一切,那我们便说该现象被预言到了,它受规律支配。但是,情况并非总是如此;可以发生这样的情况:初始条件的微小差别在最后的现象中产生了极大的差别;前者的微小误差促成了后者的巨大误差。预言变得不可能了,我们有的是偶然发生的现象①。这一段几乎是百年前的话,不正是我们近几十年才揭开的混沌来源之谜吗?
  洛仑兹从他关于长期天气预报的研究中悟出的正是这个道理。对于任何小块地区气候变化的误测,都会导致全球天气预报的迅速失真。不论气象观测站的网点如何密集,都不可能覆盖整个地球和从地面到高空的每一高度。在一尺之遥的空间范围内的一点气象涨落,都可能迅速波及到一尺之外、十尺之外、百尺之外的空间,小误差通过一系列湍流式的链锁反应,集结起来而成十倍、百倍、千倍地膨胀扩大,终于使天气预报变成一派胡言,在跨洋隔洲的地区形成山雨欲来风满楼的景象。洛仑兹非常形象地比喻说:巴西亚马孙河丛林里一只蝴蝶扇动了几下翅膀,三个月后在美国的得克萨斯州引起了一场龙卷风。人们把洛仑兹的比喻戏称为“蝴蝶效应”。这个看法当时并不为气象学家们所接受。据说洛仑兹把“蝴蝶效应”说给他的一个朋友以说明长期天气预报不可能时,他的朋友回答说 “预报不会成为问题”,“现在是要搞气象控制”。洛仑兹却不这样看,他认为,人工改变气候当然是可能的;但是当你这样做时,你就无法预测它会产生什么后果。简单的确定性系统如何会导致长期行为对初值的敏感依赖性呢?理解这一点的关键是要理解混沌的几何特性,即由系统内在的非线性相互作用在系统演化过程中所造成的“伸缩”与“折叠”变换。美国拓扑学家斯梅尔(Smale,Stephen 1930~)对此做出了重要贡献。
  斯梅尔是一个杰出的拓扑学家,本来在多维拓扑学的一些最奇特的问题上已经卓有成就。1958年,他开始对动力系统的微分方程进行深入研究,并发表了一篇过于乐观的论文。他在这篇论文里提出了一个错误的猜想。他用极为严谨的数学语言论证说,一切动力系统最终都将进入一个并不十分奇异的行为;或者说,典型的动力学行为是定态的或周期的。虽然,一个动力系统可能会出现离奇古怪的性态,但斯梅尔认为这种性态不会是稳定的。后来斯梅尔曾回忆说:“我的过分乐观引导我在那篇论文里认为,几乎所有常微分方程系统都是这样一些(结构稳定的)系统!”①他说如果他多少了解些庞加莱、伯克霍夫等人的文献,他就不会有那种愚蠢的思想。
  1959年圣诞节后,斯梅尔一家正在巴西首都里约热内卢暂住,他接到了他的朋友莱文松(Levinson,N.)的一封信,指出他的猜想是错误的,并告诉他自己关于受迫范德坡方程的研究已经提供了一个反例。早在本世纪20年代,德国物理学家范德坡(Van der Pol,B.)就已开始研究非线性电路的弛豫振荡问题,并得出了以他的名字命名的范德坡方程和受迫范德坡方程。1927年,范德坡又和范德马克(Van der Mark,J.)发现了著名的“分频”现象。莱文松用这个反例说明,一个系统既有混沌又有稳定性,混沌与稳定性共存;系统的这种奇特性质并不为小的扰动所破坏。
  当斯梅尔仔细研究了莱文松的文章,最后确信莱文松是对的时,他就把自己的猜想换成了另一个问题:典型的动力行为是什么?斯梅尔多年来是在拓扑学中进行探索的,他利用相空间对范德坡振子的全程可能性进行探索。他注意的并不只是单条的轨线,而是全空间的性态;他的直觉由这系统的物理本质跃进到一种新型的几何本质。他思考的是形状在相空间中的拓扑变换,例如拉伸或压缩变换。这些变换有明确的物理意义。如系统中的耗散,由于摩擦而丧失能量,意味着系统在相空间中的形状将会收缩,甚至可能最终完全静止下来收缩到一点。为了反映范德坡振子的全部复杂运动性态,他想到相空间必须经历一种新的变换组合。这使他从观察振子的总体行为提出了一种几何模型——“斯梅尔马蹄”。
  斯梅尔马蹄的道理很简单。取一个正方形,把它拉伸为瘦长的矩形,再把它对折弯叠成马蹄形(图7)。然后想象把这马蹄嵌入一个新的矩形中,再重复相同的变换:挤压、折曲、拉伸……
  这实际上就像厨师揉面团的操作过程:首先是伸缩变换,使面团在一个方向擀平压薄,同时在另一个方向上伸长;然后是折叠变换,将拉长的两块面对折叠置。这种操作反复进行下去。可以设想,开始时先在面团上擦一层红颜色,那么在厨师揉面过程中,红色层将被拉长、变薄、交叠起来。经过多次反复操作后,原来相邻近的两个红色粒子会越来越远地分离开去,原来不相邻近的两个红色粒子却可能越来越靠近了。
  动力系统正是通过这两种变换而形成浑沌轨道几何图象的复杂性的。伸缩变换使相邻状态不断分离而造成轨道发散。但仅有伸缩变换还不足以扰乱相空间造成复杂性,还必须通过折叠变换。折叠是一种最强烈的非线性作用。伸缩和折叠的混合并不断反复,才可能产生动力系统相轨道的分离、汇合,产生无可预见的不规则运动。在混沌区内,相空间中的伸缩与折叠变换以不同的方式永不停息又永不重复地进行,从而造成了相轨道永不自交又永不相交的穿插盘绕、分离汇聚,完全“忘掉了”初始状态的一切信息,“丢弃了”未来与过去之间的一切联系,呈现出混沌运动。这就是系统长期行为对初值的敏感依赖性的源由。
  本来,斯梅尔企图只用拉伸与挤压去解释一切动力系统的行为,而不用会大大损害系统稳定性的折叠变换。但是折叠是必要的,因为折叠使动力系统的行为有动力性态上的根本变化,是导致混沌的一种重要作用。斯梅尔马蹄给数学家和物理学家提供了一个对动力系统运动的可能性的直观理解的几何图象。
6.“周期倍化分叉”的发现
  在动力系统演化过程中的某些关节点上,系统的定态行为可能发生性质的改变,原来的稳定定态变为不稳定定态,同时出现新的更多的定态,这种现象叫作“分叉”(bifurcation)。分叉是由运动方程中参数的变化引起的,所以往往要用“参数空间”来描绘分叉现象。随着参数的变化,分叉可以一次接一次地相继出现,而这种分叉序列又往往是出现混沌的先兆,最终会导致混沌。
  生物群体数量(“虫口”)变化的研究以及涉及到的一类典型一维映射的分叉现象的研究,在20世纪70年代混沌学的创立和发展中曾经起到过特殊的作用。
 楼主| 发表于 2005-8-31 01:02 | 显示全部楼层
  澳大利亚昆虫学家尼科尔森(Nicholson,A.J.)曾经在一个大瓶子里用有限的蛋白质食物喂养了一瓶子绿头苍蝇,研究受到空间和食物限制的苍蝇群体数目(“蝇口”)的变化。他观察到有时绿头苍蝇可繁殖到将近一万只;过些时候又会降至几百只。蝇口繁殖过快超过容器的空间限制后数目就急剧减少,而活动空间的扩大又使蝇口快速增长;蝇口决不会单调增大或单调减少,呈现一种周期性的涨落。尼科尔森发现,这个循环周期大约是38天。但每个周期内蝇口数却可能出现两个峰值,而且到约450天后,蝇口的变化(振荡)变得极不规则。在这个实验中,蝇口数的变化包括了周期性、拟周期性和混沌。
  看来,生物群体应被看做是一个动力系统,是受着某种动力驱使的。在食物受限制的地域单种生物在起起落落地繁殖着;几种生物共存的区域,各种生物在生存竞争中此长彼消;在捕食者与被食者之间,存在着双向抑制作用;在宿主群体内部,流行病在传播。……这一切因素,都对生物群体起到约束作用,把群体限制在更合理的数目上。
  生态学家们一直试图为生物群体增减寻找一个数学模型。一个合理的简化就是用离散的时间间隔去模拟虫口的变化。因为许多生物群体的数目基本上都是按照一年的时间间隔变化的,而不是连续时间的变化。更有一些昆虫,它们只在一年中的特定季节里繁殖,所以它们的一代一代之间决不会重叠。一年一年的变化,正是生态学家所要了解的全部信息。因此,描写生物群体的方程不是连续的微分方程,而是比较简单的差分方程,这是一种迭代模型,即逐年逐年地反复用同一个函数进行数值运算,它可以反映由一个状态(数目)到另一个状态(数目)的跳跃变化。
  这个差分方程应该反映出以下影响虫口增减的因素:第一,虫口的增长必定与前一年的虫口数目成正比,这是一个线性关系,比例系数k即群体的增长率;第二,虫口的增长又受到空间、食物、流行病等许多因素的限制,不可能无限增长。实际情况是,群体小时稳定增长,群体适中时增殖量近于零,群体暴涨时急剧下降。
  一个较好的方程是由迭代逻辑斯蒂映射所得到的非线性逻辑斯蒂(Logistic)差分方程
  xt+1=kxt(1-xt)
  x表示虫口的相对数,它被定义为介于0和1之间的数,0代表灭绝,1代表群体的最大虫口数;t表示时间,它只能以整数 0,1,2,3……跳跃;生殖增长率k代表了这一模型的一个十分重要的特征,表示拉伸或压缩的程度,也即非线性程度。从几何学上讲,逻辑斯蒂映射表示以不均匀的方式拉伸或压缩一个线段,然后再加以折叠。对于一个生物群体来说,参数k越低,意味着群体最终将在较低的数量水平上灭绝;参数k的值提高以后,群体的数量也不会无限增长,这是可以理解的。但是计算表明,在k值提高后,群体却不可能收敛于一个定态水平,这是令人费解的。
  20世纪70年代,美国普林斯顿大学的生态学家罗伯特·梅(Robert May)开始利用计算机对这种单一群体生物随时间而变化的最简单的生态学方程进行系统的研究。他对这一非线性参数试用不同的值进行迭代计算。他发现,改变的不仅仅是输出的数量,而且也改变了输出的性质;因为它不仅影响着平衡时群体的数值,而且还影响群体是否能够实现平衡。
  梅编制了计算机程序,慢慢增加k值,对方程进行数值运算。他发现,当k值小于1时,在0到1之间任意取初值x0,经过若干次迭代,虫口数趋于终态x*=0,表示生物群体将灭绝,这是可以预料的。当1<k<3时,任取初值x0,经过一系列迭代(演化过程)后,虫口数越来越趋于一个稳定态x*=1-1/k;如取k=2,则虫口数将最终稳定在x*=0.5;若取k=2.4,则x*=0.5833;若取k=2.7,则x*=0.6292;随着k值的增大,稳定平衡值也会增大,但系统的行为没有质的变化,都会达到一个稳定的定态(即虫口数达到一个稳定值)。
       为了在全局上对逻辑斯蒂差分方程的解(即最终定态)做出了解,梅以参数k值的变化为横坐标,以群体最终虫口数为纵坐标,把二者的变化关系集拢在一张图上(图8)。
  迭代计算发现,当k值超过3之后,系统的定态失稳了,这条线分裂为两条,虫口振荡于两年的两点之间,x*值在两个数之间一年一换地交替跃变,这是周期2循环。当k值增大到3.5左右时,周期2吸引子也开始失稳,出现周期4循环,群体的不同起始值x*都收敛于以4年为周期的循环中,每4年返回近原值一次。当k值增至3.56后,周期又加倍到8;k到3.567时,周期达到16。此后将更快地出现32、64、128……的周期倍化序列。这就是“周欺倍化级联”;倍周期就是分叉或双分枝现象。周期分裂再分裂,这种双分枝越来越快地发生,以致到k=3.58左右这种分裂突然呈现崩溃之势,周期性态就变成混沌,虫口的涨落再也不会确定下来,虫口的逐年变化完全成为随机的,全部区域染成了墨色。
  这么简单的动力学系统,在非线性作用下,当k从0趋向4时,其动力学性态的复杂性逐步增加,即从定态变为周期性态,通过周期倍化级联而到达混沌性态。
  但这还不是最终的图景。更令人惊奇的是,在这个复杂的区域中又会突然出现一个有正规周期的窗口(图8中狭窄的白条部分);不过周期由偶数变为奇数。如当k=3.835时,出现周期3循环;轻微地增加k值,周期以新的“倍化级联”出现6、12、24、48……周期。当k=3.739 时,将得到周期5循环,此后又是双分枝的10、20、40……的周期。愈来愈快的倍周期双分枝再度爆发出现混沌。
  这是一个十分奇妙的图景:分叉再分叉,加快更加快,周期性态走向混沌性态,混沌区内又出现周期窗口;窗口内还有更小的窗口,出现更稠密的周期性态;放大任何窗口,都会重现整个图景的微缩复本。
  图象特别明显地显示出,周期区内分叉序列中两个相邻分叉点之间的距离越来越快地缩短,而且似乎有某种规则的比例关系。美国物理学家费根鲍姆(Feigenbaum,Mitchell)敏锐地觉察到了这种几何收敛的周期僵化级联现象的规则性,对收敛的速度——标度比的值进行了深入的探讨。1975~1976年,费根鲍姆在一次会议上听到斯梅尔关于逻辑斯蒂映射及其通过周期倍化级联走向混沌的介绍后,投入到对逻辑斯蒂映射的研究。那个时代,使用计算机是件麻烦冗长的过程,要用穿孔卡分批输入数据,几天后才能出结果。所以费根鲍姆宁肯用惠普HP65型可编程计算器,这是一个幸运的选择。因为计算器算得很慢,促使操作者在结果出来以前常去思考它。为了节省时间,费根鲍姆就尝试大致揣测级联中的下一个分叉点可能在哪里。不久他就发现了规律,相继的分叉点之差具有恒定的比率,前一个差值约为后一个差值的4倍,更精确地说,这二者的比率约为4.669。对一个物理学家来说,恒定比率意味着标度率,表明物理学特征必在愈来愈小的标度上再现,这当然是极为重要的。费根鲍姆用这个方法对另一个映射即三角映射x→ksin(x) 进行了计算,同样发现了周期倍化级联和几何收敛现象,更为惊人的是它的标度比值也是4.669。

 楼主| 发表于 2005-8-31 01:05 | 显示全部楼层
  费根鲍姆利用计算机进行了更精确的计算。对于逻辑斯蒂映射,他很快得出了一个更精确的标度比值:4.6692016090;对三角映射重复计算,到小数点后10位,两数完全相同。看来标度比不依赖于方程,无论逻辑斯蒂映射还是三角映射,没有什么差别。这当然不可能是巧合。费根鲍姆的发现表明,在逻辑斯蒂映射一类的非线性映射中,倍周期分叉遵循一个普适性规律:当t→∞时,分叉间距比存在一个极限值(更精确的)δ=4.66920160910399097……
  同时,分叉也在越来越窄的宽度上出现,这又是一种普适性规律:相邻两个分枝间的宽度按一定比率缩小,缩小因子在t→∞时也存在极限值
  α=2.5029078750958928485……
  这两个常数被称为“费根值”(Feigenvalue)。费根值的普适性也具有相对性,它只适用于具有像抛物线那样的峰的单峰映射;对于多峰或者具有扁平峰和尖峰那样的情况,标度比值将会不同;但每一类的映射,其标度比总是相同的。
  费根鲍姆的发现,是一条普遍适用于一切从有序转变到混沌的动力系统在转变点上的自然规律。这种普适性不仅是结构的,而且是测度的。这一发现的意义在于,动力系统中存在着标度变换,它不仅控制着分叉花样,而且延伸到精确数值。事物整体具有与其部分相似的结构,说明在完全确定的系统中不需要引入任何干扰,就可能出现不规则的随机运动,这是一种内禀特性。
  费根鲍姆关于普适性的发现,指引人们走上混沌科学的大道,推动了非线性科学的发展。
  费根鲍姆写道①:“物理学中有一条基本假定,那就是分析分析再分析,把事物的组成分离出来,直到你真正明白基本的东西在单纯的状态以如何简明的规律行事,然后,你就假定那些你还不懂的事物都是细节。……”但是现在不行了,因为“大量系统底层有一反复运行之规律,需要用另一种思维去认识它。……这要抛弃纯分析的方法,不能分析分析再分析。”他接着写道:“人类要另辟新径,必须捉住标度结构这一环,看看大家伙与小家伙的关系如何。……这产生复杂性的、持续进行的单一过程却与大小尺寸无关,与地点无关,与时间无关,它是普适的标度变换,它存在于大与小的自相似之中,由小到大自相似的放大比率就是一个普适的费根鲍姆常数。”
  最后,他感慨万千地写道:“大地充满了美,引人入胜。看你是什么职业你就如何理解”。
7.湍流研究和奇怪吸引子
  湍流现象普遍存在于行星和地球大气、海洋、江河、火箭尾流、锅炉燃烧室、血液流动等自然现象和工程技术中。湍流的出现将使流体中的质量、动量和能量的输运速度大大加快,从而引起各种机械的阻力骤增,效率下降,能耗加大,噪音增强,结构振颤加剧乃至破坏,如使飞机坠落,输油管阻塞。另一方面,湍流又可能加速喷气发动机内油料的混合和充分燃烧,提高燃烧效率和热交换效率,加快化学反应的速度和混合过程。所以湍流的研究对工程技术的进步有重要意义。同时湍流本身也是物理学领域中尚未取得重大突破的基础研究课题之一。因此长期以来湍流的研究一直受到各方面的重视。
  湍流是流体中局部速度、压力等力学量在时间和空间中发生不规则脉动的流体运动。其基本特征是流体微团运动具有随机性,它不仅有横向脉动,而且有反向运动,各个微团的运动轨迹极其紊乱,各个部分之间剧烈渗混,流场极不稳定,随时间变化很快。湍流的运动不仅有无穷多个自由度,大、中、小、微各种尺寸的涡旋层层相套,而且运动的能量迅速由大尺度运动分散到小尺度运动,错综复杂地由整化零,是高度耗散的。湍流是经过一次或多次突变形成的,在紊乱无规的背景中又会出现大尺度、相当规则的结构和协调一致的运动,所以给研究工作带来极大的困难,经过一百多年的研究,现在还没有得到令人满意的理论解释。有一个传说,说量子力学家海森伯在临终前的病榻上向上帝提了两个问题:上帝啊!你为何赐予我们相对论?为何赐予我们湍流?海森伯说:“我相信上帝也只能回答第一个问题”。
  早在1893年,庞加莱就发现了湍流问题,但又偏离了它。他发现,液体流中的涡旋通常不扩散,而是倾向于集中到单个涡旋之中。他说这一现象还没有恰当的数学解释。实际上他讨论的是二维现象,还不是真正的湍流,但与间歇现象有明显的联系,表明他已很接近湍流的探讨。
  1895年,雷诺(Reynolds,Osborne 1842~1912)提出湍流瞬时运动可分解为时间平均和脉动两个部分,即

  其中是相应力学量的时间平均量,f′是脉动值。将这个分解式代到纳维-斯托克斯方程组中,可得到关于平均流动元素满足的雷诺方程组。但方程组不封闭,多出6个未知的湍应力分量。只有找到湍应力和平均流动元素之间的相应关系式,才可使方程组封闭,至今这一问题仍未获解决。
  法国流体动力学家库埃特(Couette,M.M.1858~1943)为了研究流体被扭曲的“切变流”,曾制造了一个筒里套筒的双圆筒装置,中间装上水,使外筒固定,内筒旋转,有控制地进行切变实验。1923年,英国应用数学家泰勒 (Taylor,GeoffreyIngram1886~1975)利用这种旋转同心柱体进行实验。当内筒转速足够高时,发现流体不再平稳地转动,而是搅乱成成对的涡旋,涡旋会变成波状,波动又此起彼伏,出现麻花涡旋、辫子涡旋等螺旋模式;转速更高时,系统则呈湍流状(图9)。 


  由于湍流看起来包含着十分微小的涡旋,而小于原子尺度的涡旋又是不可想象的,所以可以设想湍流是原子结构的宏观效应。1934年,法国数学家勒雷(Leray)提出,纳维-斯托克斯方程在原子尺度上的不准确度,经过物理流传播后规模变大而形成湍流。他据此解释了湍流的间歇现象。 1941年,前苏联科学家柯尔莫果洛夫对涡旋的性质提出了一些看法。他设想,大涡旋中形成更小的涡旋,而每一次都会消耗流体的能量;当涡旋变得非常小,粘性流体的能量也会减少到一个极限值。他认为,这些涡旋充满流体的整个空间,使得流体处处相同。实际上这个均匀性假设并不正确,他忽视了湍流的间歇现象。 40年前庞加莱就已经看到,在江河的湍流中,涡流总是和平稳流混在一起的,能量仅在空间的一部分中耗散。在湍流区域的各种尺度下,都存在着平静的区域;在从大到小的所有尺度下,汹涌的区域与平静的区域是互相混杂的。这就是间歇现象。
  那么,平稳流是如何变成湍流的呢?也就是说湍流开始的时候是通过什么样的步骤形成的呢?1944年,前苏联物理学家朗道 (Landau,Lev 1908~1968)在一篇论文中提出了湍流肇始的一幅图景:当表征系统中外力与粘滞力竞争的无量纲雷诺数为零时,流体将做光滑的平稳流动;当由于外界的扰动而使雷诺数增大时,层流中分枝出一个周期轨道,对应于流体的周期运动;当更多的能量进入流体,即雷诺数不断增大时,每次都出现一个与上一个频率不和谐的频率;当频率数足够大时,拟周期运动即转变为湍流。这就是说,各种不同频率的运动的积累和叠加,相互交错干扰,就会产生非常复杂的湍流。1948年,德国数学家霍普夫(Hopf,Eberhard1902~1983)按照同朗道一致的思路,提出了一个更加详细的理论,即通过摆振的积累而由平稳层流转变为湍流的具体机制。此后20多年,霍普夫-朗道理论曾被广泛接受。
  1967年,Kline首先利用氢气泡显示技术通过实验发现了近壁湍流的相干结构(拟序结构)。这种大尺度的涡旋运动在将流体的平均运动动能转变为湍流的动能的过程中,起了主要的作用。人们通过进一步的流体动力学实验,还发现了自由剪切流的相干结构。到80年代,流体力学家们普遍认识到相干结构是对湍流的生成、维持和演化起主要作用的结构。所以有人认为相干结构的发现是湍流研究上的一个革命性的进展。不过到目前为止,关于相干结构的定义、成因和定量分析还有不少问题有待研究。
  关于湍流的形成,即流体的运动是如何从层流转变成湍流的问题,目前流行的看法是认为,在层流中由于各种原因出现的扰动波,经演化、放大、失稳而导致流体运动的不稳定,最终发展为湍流。
  70年代以来,非线性科学关于混沌现象的理论和实验研究的进展,为解决湍流理论的百年难题提供了启示。特别为解决湍流的发生机制、小尺度混乱与大尺度结构共存等问题带来了希望。
  1971年,法国物理学家茹勒(Ruelle,David)和荷兰数学家泰肯斯(Takens,Floris)的《论湍流的本质》一文,对湍流的研究产生了很大的影响。他们的结论否定了霍普夫-朗道关于湍流起始阶段的传统观点。朗道和霍普夫的直觉即一系列不同频率摆振的累积在数学上和物理学上似乎是容易理解的,但他们的理论在某种程度上是源于哈密顿动力学的,不适用于有摩擦的耗散系统。在粘滞流体的流动中充满着摩擦。茹勒和泰肯斯指出,由平稳流向湍流的转变,不需要一系列的频率,只要三个独立的运动就会产生湍流的全部复杂性。他们描绘出如下的图景:第一次转变,即从定态到单个摆振,产生流体中的周期运动。第二次转变,即加上一个不同频率的摆振,开始时像两个独立的周期运动的拟周期叠加,但这种运动不能继续保持下去,微小的扰动就会破坏掉它。两个独立的周期运动将相互作用而变得同步,合成为具有单个合成周期的周期运动,即发生锁频现象。当有三个叠加频率时,不再发生频率的锁定现象,而会出现一个新奇的结果,即运动进入维数不多的“奇怪吸引子”。他们认为,湍流能量的耗散,必定导致相空间的压缩,把运动轨迹向着吸引子的低维相区推进。这个吸引子不会是不动点,因为湍流不会逐渐平息;也不会是周期吸引子,因为湍流是一种不同次序的性态,决不可能产生任何排斥其它节奏的节奏,它具有各种可能循环的整个宽谱。其相轨迹可能是一种继续不断变化、没有明显规则或次序的许多回转曲线,所以称为“奇怪吸引子”。茹勒和泰肯斯论文中的一些推理和证明是模糊的、错误的,但他们提出的“奇怪吸引子”的图象,却是十分吸引人的。因为湍流的产生可能很好地对应于奇怪吸引子的出现。这是对湍流产生机制的一个很好的阐明。
  1973年,美国实验物理学家斯文尼(Swinney,Harry)和戈鲁布(Gollub,Jerry)利用旋转同心柱体产生的库埃特-泰勒流进行实验。外面是一个玻璃圆筒,有空网球筒那么大;内柱体是用平滑的薄钢板做成的;两柱体之间有八分之一英寸的间隙用来装水。他们利用激光多普勒干涉仪技术,即利用激光光束在悬浮于水中的小小铝粉片上的散射,来测定水的速度变化。本来他们是打算验证朗道关于由液体中不同频率摆振的平稳积累而形成湍流的论断。他们不断调节内柱体的旋转速度,反复观察出现的跃迁。他们观察到了朗道预言的第一个转变的精确数据;他们大胆地寻找着下一个转变。但是,他们未能找到预期的朗道序列,在下一个跃迁处,流一下子进入混乱状态,一点也没有可准确识别的新频率;相反,却逐渐显出宽带频率。“我们的发现是,变成了混沌!”不过,当时他们还不知道茹勒-泰肯斯理论。
  1974年,茹勒访问斯文尼和戈鲁布的实验室时,三位物理学家才发现了他们的理论和实验之间的点滴联系。斯文尼和戈鲁布没有用他们的实验观察奇怪吸引子,也没有检测湍流最初阶段的具体步骤,不过他们知道,朗道错了;而且他们猜测茹勒是对的。
  1983年,法国数学家曼德尔布罗特(Mandelbrot,Benoit)指出,湍流的耗散区域,即湍流中大大小小不同尺度的涡旋高度集中的区域,是一种间歇状的分形结构,具有局部的自相似性。因此分形理论在湍流的研究中也有重要应用。
  由于湍流的瞬时运动服从纳维-斯托克斯方程,而这一方程本身就是封闭的,所以很容易直接用电子计算机数值求解完整的纳维-斯托克斯方程,对湍流的瞬时流动进行直接的数值模拟。不过由于受到计算机速度和容量的限制,目前的数值模拟还只限于很低的雷诺数和很简单的几何边界条件的情况;而实际的湍流运动大多发生在高雷诺数和边界条件很复杂的情况。所以,湍流的完整理论的形成,还需做很多艰巨的工作。茹勒和泰肯斯提出的“奇怪吸引子”理论,并不只对湍流的研究有重要意义,而是对整个混沌理论的发展都有重要作用。利用相空间描述系统的演化要用到“吸引子”概念。一般的动力系统,最终都会趋向于某种稳定态,这种稳定态在相空间里是由点(某一状态)或点的集合(某种状态序列)来表示的。这种点或点的集合对周围的轨道似乎有种吸引作用,从附近出发的任何点都要趋近于它;系统的运动也只有到达这个点或点集上才能稳定下来并保持下去,这种点或点集就是“吸引子”。它表示着系统的稳定定态,是动力系统的最终归缩,即系统行为最终被吸引到的相空间处所。
 楼主| 发表于 2005-8-31 01:05 | 显示全部楼层
经典力学指出,有三种类型的吸引子。一种是稳定的不动点,它代表一个稳定定态;第二种是稳定的“极限环”,即相空间中的封闭轨线,在它外边的轨线都向里卷,在它里边的轨线都向外伸,都以这个封闭曲线为其极限状态。极限环代表一种稳定的周期运动;第三类吸引子是稳定的环面,代表系统的准周期运动。
  对一个动力系统来说,在长时间后系统的性态只可能是吸引子本身,其它的性态都是短暂的。所以吸引子的一个重要特征是“稳定性”,它表示着运动的最终趋向或“演化目标”,运动一旦进入吸引子,就不会再离开它;当一个小的扰动使系统暂时偏离吸引子后,它也必然会再返回来的。吸引子的另一个重要特征是“低维性”,它作为相空间的点集合,其维数必定小于相空间的维数。
  上述几类吸引子,都代表规则的有序运动,所以只能用于描述经典动力系统,而不能描述混沌运动。有耗散的混沌系统的长期行为也要稳定于相空间的一个低维的点集合上,这些点集合也是一种吸引子。但是混沌之所以是混沌,就是它绝不可能最终到达规则的有序运动;因而在它的吸引子内部,运动也是极不稳定的。在这种吸引子上,系统的行为呈现典型的随机性,是活跃易变和不确定的。更为奇特的是,混沌系统的吸引子(点集合)具有极其复杂的几何图象,如果没有电子计算机这种高效工具,混沌吸引子是无法绘制出来的。所以茹勒和泰肯斯把它们称为“奇怪吸引子”,以区别于前述那几种“平庸吸引子”。奇怪吸引子既具有稳定性和低维性的特点,同时还具有一个突出的新特点,即非周期性——它永远不会自相重复,永远不会自交或相交。因此,奇怪吸引子的轨线将会在有限区域内具有无限长的长度。
洛仑兹所给出的那个绕两叶回转的永不重复的轨线,就是一个奇怪吸引子——“洛仑兹吸引子”。它是在三维空间里的一类双螺旋线;系统的轨道在其中的一叶上由外向内绕到中心附近,然后突然跳到另一叶的外缘由外向内绕行;然后又突然跳回原来的那一叶上。但每一叶都不是一个单层的曲面,而是有多层结构。从中取出任意小的一个部分,从更精细的尺度上看,又是多层的曲面。所以这种螺旋线真是高深莫测、复杂异常。它永远被限制在有限的空间内,却又永不交结,永无止境。1976年,德国的若斯勒考察了一个更为简化的洛仑兹方程
  dx/dt=-(y+z)
  dy/dt=x+ay
  dz/dt=b+xz-cz
  这个方程组的特点是只有最后一个方程中含有非线性项xz。若斯勒由这个方程组得出了一个洛仑兹吸引子的变种(图 10)。
screen.width-333)this.width=screen.width-333">< BR>
  它也是由很多层次构成的复杂几何图象。与洛仑兹吸引子不同,若斯勒吸引子只有一片。它似乎是这样形成的:当z较小时,系统的轨道在 (x,y)平面或平行于它的平面内向外旋;当x足够大时,z开始起作用,轨道在z轴方向拉长;当z变大后,dx/dt则变小,轨道又被拉回到x较小处。三个变量的交互作用,产生了轨线的复杂运动。
  除此之外,混沌学家们还得到了一些其它的奇怪吸引子。可以断言,充分认识奇怪吸引子的作用,对许多问题的探索,都会有巨大的作用。不过,奇怪吸引子的数学理论是困难的,目前还处于起始的阶段。正像茹勒所说:①“这些曲线的花样,这些点子的影斑,往往使人联想到五彩缤纷的烟火,或宽阔无垠的银河;也往往使人联想到奇怪的、令人烦躁不安的植物繁殖。一个崭新的领域展现在我们面前,其结构需要我们去探索,其协调(和谐)需要我们去发现。”
8.生理混沌的探索
  70年代以来,在生物个体的生理现象中,也广泛地发现了混沌。
  生物体全身的每个器官,都有自己的节律。生命的存在,就是一个耦合振子,即各种内在节律振动的巧妙组合。一旦某种节律失调,就会使生命体患上某种疾病。
  心脏的搏动,是推动一切生命节律的中心环节。正常的心律是周期性的。人的心搏大约是每分钟50到100次,日复一日、年复一年地进行着;但是它有许多非周期的病,例如对生命危险极大的心室纤维性颤动。不同的心肌彼此不合节律地收缩,不协调地乱动一起,起不到正常泵血的作用,终致使病人死亡。病者心脏的各个部分似乎都是正常的,节律依然是规则的;但心脏的整体运动,却致命地扭曲了,陷入了稳态混沌。这是一种复杂系统疾病。心脏自己不会停止这种纤颤,只有用电击除颤器来消除。这种电震击是一个巨大的扰动,可以使心脏返回到定态。为什么心脏的节律在人的一生中经历几百亿次的搏动,其中经过多少次的紧张与松弛,加速与减速,从未失误,然而却会突然进入一种无法控制的、致命的疯狂节律——纤颤呢?研究表明,有一类重要的心律失常可能是所谓“模式锁定”引起的,即两种并行收缩心律的相互作用产生的。从物理学上讲,就是外来的迫动频率与物体振荡的固有频率以某种简单的数字比率达到同步,这称为“锁相”。加拿大数学生物学家列昂·格拉斯(Glass,Leon 1943~)和他的同事在1981年进行了一个有趣的实验。他们从鸡胚心脏中取出一团细胞,这团细胞能够自发跳动,相当于固有振荡器,每分钟跳动60次到 120次。然后用一根极细的玻璃微电极插入细胞团,打入一个相当于迫振的周期性小电震。改变电脉冲的频率和振幅,结果不仅产生了各种“锁相”,而且产生了混沌。他们观察到了搏动方式一次又一次地出现了分叉,即“倍周期”现象。这个结果表明,模式锁定可以导致混沌,即使鸡胚心脏的细胞团混沌地搏动。
  科学家们的研究表明,一个参数的微小变化,可以把一个健康的心脏推进到一个双分枝点而进入混沌态。科学家们希望通过混沌动力学的研究,能够找到一种方法,在危急的纤颤发生之前,辨认出它的来临;并设计出最有效的除颤装置和治疗药物,使这些猜想盲试的方法变得比较科学。
  类似的动力系统疾病现在也越来越多地被认识。这类疾病是由于系统的原有振荡停止或振荡方式改变引起的。例如喘息、婴儿窒息、精神分裂症、某种类型的抑郁症,还有由于白细胞、红细胞、血小板、淋巴细胞失衡而导致的某种白血病等。但是,生理学家已开始认识到,生理混沌可以导致疾病,它也可能是健康的保证。一个生命系统固然需要有抗干扰性,如心肌细胞和神经细胞能够很好地抵抗外界的干扰;但生物系统还需要有灵活性,即能够在一个很大的频率范围内适应外界的各种变化而正常工作。环境的变化常常是难以预料的,生物机体必须能够迅速地对各种变化做出反应。如果机体的某种功能锁定在一个严格固定的模式里不可改变,那就会丧失掉对外界变化的适应能力。例如把心脏搏动与呼吸节律都锁入一个严格的周期中,在机体松弛与紧张的不同状态,在空气稀稠不同的各种海拔高度上,都只有同一种节律,这个生物体就不可能存活下去。人体的其他许多节律也都如此,都必须有多种变化的可能。哈佛医学院的戈尔德伯格 (Goldberger,Ary L.)断言,健康的动力学标志就是分形物理结构;治疗疾病时应着眼于拓宽一个系统的谱储备,即增加产生不同频率的能力。“广谱的分形过程是‘信息上极为丰富的’。与此相反,周期态只能反映狭窄谱带,它必然是单调的、重复的系列,信息内容贫乏。”①圣迭戈的精神病学家阿诺德·曼德尔 (Mandell,Arnold)甚至说:“可能是这样,数学上的生理卫生健康其实就是疾病,而数学上的病理才是健康,即混沌态才是健康。”②他认为,人体中最混沌的器官就是脑,说人达到了平衡,那就是死亡,生物学平衡即死亡。“如果你被我询问你的头脑是否在平衡态,你的脑是否一个平衡系统,那就是说,要求你在几分钟的时间里不要去胡思乱想,而你这时自己就会知道你的大脑并非平衡系统。”③科学家们也已开始用混沌来研究人工智能。例如利用系统动力学在多个吸引流域之间的来回变迁与沟通来模拟符号与记忆。人的精神思想包含着丰富的概念、决策、情绪和七情六欲,不能把精神和思想描绘成静态的数学模型,它具有一系列尺度的层次,神经元实现着各种微观尺度与宏观尺度的交融联系,这与流体力学中的湍流或其它复杂的动力系统十分相似。量子物理学家薛定谔 (1887~1961)在《生命是什么?》这部名著中提出:生命以负熵为食;一个活的生物体有惊人的本领去浓缩“有序性之流”于自身之中,从而使生命避免融入原子混沌的崩溃之路。这正是生命活动的最基本的奥秘,它吮吸有序性于无序的海洋之中!他指出,生命的基本物质是“非周期晶体”,它组成了生物体这个十分动人的、复杂的物质结构。所以,非周期性正是生命奇特性质近于神妙境地的根源!无论人们如何看待混沌,但无论如何也不能把混沌和非周期性从人体、生命、精神思想中排除出去了。
  通过混沌探索的历史回顾,我们可以断言,混沌学正在改变着整个科学建筑的结构,改变着整个科学世界图景。混沌学的发展,或者更广义地说,非线性科学的发展,拨正了科学探索的方向盘。未来科学的任务,不是使用经典确定论的手术刀剖析明白宇宙的钟表结构,而是按照确定性与随机性统一的观点,阐明客观世界这个超巨系统的复杂结构和运行方式,揭示它演化发展的机理与途径。J.格莱克(Gleick,James)在《混沌》一书中写道:“这门新科学的最热情的鼓吹者们竟然宣称:20世纪的科学只有三件事将被永志不忘,那就是相对论、量子力学和混沌。他们认为混沌是20世纪物理学的第三场大革命。与前两场革命相似,混沌与相对论及量子力学一样冲跨了牛顿物理学的基本原则。正如一位物理学家所说:‘相对论消除了绝对空间和时间的牛顿幻觉;量子力学消除了关于可控测量过程的牛顿迷梦;混沌则消除了拉普拉斯决定论关于可预见性的狂想’。而这第三场革命又有一些不同,它直接适用于我们看得见摸得着的世界,是在和人类自身尺度大小差不多的对象中发生的过程。”①
发表于 2010-12-25 23:55 | 显示全部楼层
好帖啊,入门学习了!
您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2025-1-19 19:48 , Processed in 0.071109 second(s), 17 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表