声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 2211|回复: 0

[其他相关] 模态之单自由度理论与CAE

[复制链接]
发表于 2021-4-2 16:27 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?我要加入

x
模态是结构系统的固有振动特性。线性系统的自由振动被解耦合为N个正交的单自由度振动系统,对应系统的N个模态。每一个模态具有特定的固有频率、阻尼比和模态振型。系统的模态可通过理论计算、试验或计算分析得到。本文通过理论计算与CAE结合,更加体会到CAE工具的便捷及易懂。

一、理论分析

振动系统的组成三要素:质量、刚度、阻尼,振动系统的运动方程(力平衡给出方程)为:
1.png
单自由度阻尼强迫运动方程

2.png
单自由度阻尼强迫振动系统

若系统无外界激励且略去阻尼,则系统运动方程为:
3.png
单自由度无阻尼运动方程

4.png
单自由度无阻尼振动系统

通过求解,可得到系统的固有频率为:
5.png
单自由度无阻尼振动系统固有频率

式中,f 为系统的固有频率,m 为系统的质量,k 为系统的刚度。

二、CAE分析

假设该单自由无阻尼振动系统的质量m 为1.0kg,系统的刚度k 为100N/mm,在Hypermesh界面建立该振动模型如下所示:
6.png
单自由度无阻尼CAE振动模型

7.gif
单自由度无阻尼CAE模态振型

8.png
数学模型与CAE模型互等

通过CAE计算,得到该系统的固有频率为50.33Hz,由理论公式计算得到固有频率为50.35Hz,即理论与CAE相吻合。
三、小结

通过CAE建立相对应的理论振动模型,可验证CAE的正确,且反哺理论的博大精深,这对于从事CAE的人员来说,更能增加信心,也能增强学习的热情和对枯燥无味CAE仿真的热爱。

来源:头条号知识浆糊,作者:蓝枫。

回复
分享到:

使用道具 举报

您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2024-12-27 20:48 , Processed in 0.095194 second(s), 21 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表