声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 2226|回复: 0

[综合] 故障轴承声学信号时域处理方法,不要小瞧用眼睛看

[复制链接]
发表于 2017-10-16 14:00 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?我要加入

x
  滚动轴承故障声学信号的检测与处理方法一直以来是个热点研究方向,已经有几十年的研究历史。对应的研究论文数以千计,大体上能够分为两类处理方法:第一类是对采集到的声学信号直接在时域进行处理,第二类是频域处理方法。当然,另一些处理方法属于时频结合。

  本文仅对常见的时域处理方法做一些总结。鉴于收集到文献资料并不完整,所以该总结也仅仅是介绍一些传统的方法。另外,因为本人水平有限,近些年比较流行的声发射技术及其相关的时域处理方法在本文中并未涉及。

  所谓故障轴承声学信号的时域处理方法是指在时间域内,对故障轴承声学信号进行推断和分析的方法。其中,最简单的方法就是将轴承的声学信号画出波形图来用眼睛来看,靠大脑来分析。其它复杂一些的方法还包含利用各种统计学参量来评估轴承的状态。

  不要小瞧靠眼睛看波形分析轴承故障这样比较原始的方法,实际上人脑是一台相当强大的超级计算机,而且执行着复杂的自适应算法,靠这样的看似简单的方法,我们可以确定波形中是否存在幅度调制现象,是否有轴偏载现象存在,是否存在异常的高频振动。
1.png

  上图给出了一个内圈存在故障的轴承的声音信号,采样频率为100KHz,图上给出了0.1s时间内的波形。通过观察波形,我们可以获得大量的信息,比方上图中我们能看到声音信号包括周期性的冲击信号成分。这样的冲击信号是因为滚子通过内圈故障点时,撞击故障点而产生的。将上图进一步放大将会看的更加清晰。
2.png

  由局部放大图可以发现,图中存在3处较强的冲击振动,反复频率与滚子通过内圈的通过频率全然吻合,因此能够判定为内圈单处故障。滚子通过故障点时激起轴承体系的结构共振,随着滚子通过故障点,这样的共振会迅速衰减。通常,有经验的工程师看一眼声音波形,就能推断轴承是否存在故障,简单测量一下相邻两次冲击振动的时间间隔,就能确定轴承的故障类型。

  故障轴承的声音与正常轴承的声音有非常大的差别。这些差别导致故障轴承声音的很多统计学参量,与正常轴承声音的统计学参量的取值范围有较大的差别。依据这些差别,我们就能够判定轴承是否存在故障。

  常用的重要统计学参量
  01、峰值
3.png
  峰值反映的是振动波形的最大振幅。适用于表面剥离类故障,由于这一类故障出现时滚动体与故障点会发生强烈的撞击,致使声音信号发生突变,产生短时间内的大幅值信号。但是,峰值容易受到外界噪声干扰,所以,很少单独作为推断准则。

  02、均值
4.png
  对于声音信号,其平均值应为0,一般来说无需计算这个参量。但是有时为了确定信号采集系统是否工作正常,会计算这个值。

  03、均方根值 (RMS值)
5.png
  均方根值也称之为有效值,是一个应用广泛的统计参量。这个参量表征的是轴承产生的声音信号的能量大小,是推断轴承执行是否正常的一个重要指标。轴承没有故障时执行平稳,声音较小,相应的RMS值也相对较小;随着故障逐步加剧,RMS值也会随之添加。RMS值对于诊断磨损类故障或轴承缺油类故障的趋势分析非常有效,但是,对表面小范围剥离或伤痕等,具有冲击振动形式的故障相对不是很敏感。

  04、波峰因子 (Crest Factor)
6.png
  波峰因子反映的是声音信号最大值与有效值间的比值,这个比值越大,说明声音信号中存在的短时间大幅值的瞬时振动越剧烈。对于无故障的轴承,波峰因子接近3.5。

  05、峭度因子 (Kurtosis)
7.png
  峭度因子反映的是波形偏离正态分布的程度。白噪声的峭度值为3,有时,我们也会见到另外一种峭度的定义:
8.png
  这样的定义并没有引入新的概念,仅仅是将高斯型分布的信号的峭度因子定为了0,峭度值越大反映信号偏离高斯型分布越远。

  一般统计学参量的计算方式包括以下两种:
      直接对原始的声音信号进行计算;
      先对原始信号进行滤波处理,将原始信号中不同频段的信息提取出来,然后,分别计算统计学参量。

  通常各种噪声集中在低频段,高频段上更能体现出故障特征。例如,下图是将图1的声音波形用一个20-40kHz的带通滤波器滤波后的结果。
9.png

  从图上能够看出,滤波之后故障点的“通过振动”变的很明显。峭度值也增加到了25.3,波峰因子增长到了10.3。RMS值和峰值能够用来对轴承执行状态进行趋势跟踪,可是不适合单次判定。由于不同的工作环境,不同的轴承,这两个值会有非常大的变化,我们无法选择一个合适的阈值来推断轴承是否存在故障。峭度值和波峰因子与轴承声音信号的大小无关,因此用这两个参量来推断轴承故障,尤其是轴承早期故障会比较准确。但是,随着轴承故障的加剧,轴承的振动特征会变的越来越随机,这两个参量的计算结果也会减少。因此,仅仅通过这两个参量是无法确定轴承故障的严重程度的。

  滤波频段的选择也很重要,下表给出了对上面轴承声音波形进行了各个不同频段的滤波处理之后的,峭度值和波峰因子的计算结果。
10.png
  由上表可以发现,频率段选的越高,得到的结果会更好,也就是说高频段中故障特征声音更明显。但是,这也不是绝对的,对于某个特定的问题,还须要通过实验测试来获得最佳的滤波频段。

  当然,也能够从轴承声音信号幅度的分布来研究这个问题。对于良好轴承来说,其发出的声音近似为白噪声,幅度分布接近正态分布。对于存在故障的轴承,其振幅的分布就会产生偏离。

  下图给出了一个新轴承和一个故障轴承声音的幅度分布,对原始声音信号做了带通滤波处理,横坐标依照信号的标准差进行了归一化。
11.png
  新轴承的声音信号点主要集中在0点附近(-5~5个标准差以内),偏离3个标准差的信号点非常少。而故障轴承因为存在“通过振动”,所以,有相当比例的信号点偏离0点非常远。因此,通过统计偏离某一个阈值的信号点所占的比例,也能够判定轴承是否存在故障。

  来源:博客园 claireyuancy博客

回复
分享到:

使用道具 举报

您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2024-12-28 12:52 , Processed in 0.118378 second(s), 21 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表