|
楼主 |
发表于 2005-7-26 16:13
|
显示全部楼层
本帖最后由 shogo 于 2016-3-2 10:45 编辑
(4) 网格模板法(RSD法) Shephard、Perucchio、Saxena、Sapidis和Yerry等是这种方法成功运用的主要代表。网格模板法生成有限元网格主要分两步(以介绍三维实体为主):其一、 将待分实体用适当大小的立方体箱(树根)完全包容,按“一化八”原则递归离散,然后对每个八分块按如下方法进行分类: Procedure ModClassCell(Cell,S)=(''IN'',''OUT'',''NIO'') If (八分块中至少有一个顶点为''OUT''且至少有一个顶点为''IN'') then ''NIO'' Else if (Cell (*S=() then ''OUT'' Else if (Cell (*S=Cell) the ''IN'' Else ''NIO'' End; {procedure} 对于IN的八分块继续递归离散直到预定水平级为止,OUT的八分块不再划分,NIO的八分块进一步子划分,且分类直到预定水平级为止。称终了IN和NIO八分块的并集为RSD模型。其二,对已经形成的RSD模型,目前已有多种生成网格的处理方法。主要有三种:RSD/GDT法、RSD/EE法和RSD/DDT法。它们主要有以下特点:
① RSD/EE法不能处理曲面实体、非流形体和不连通实体。与此相反,RSD/DDT法却能处理有孔的任意曲面实体、非流形体和不连通实体,而且所形成四面体形状质量良好。
② RSD/DDT法根据需要以满足条件为准则插入新点,因此所插入的新点数量少,而RSD/GDT法则会插入许多冗余点。
③ RSD/GDT法使用点/实体分类,使时间复杂性至少大一个数量级,而RSD/DDT法不使用点/实体分类,因此,RSD/DDT法平均时间复杂性为O(N2),N为实体S的总表面数。RSD/EE法具有不确定的时间复杂性。
④ RSD/DDT法完全建立网格图素拓扑一一对应,因此拓扑是健全的,与此相反,RSD/GDT法是拓扑不健全的。 各种RSD法的优点是网格生成完全自动,网格剖分速度快,非常适用于自适应网格生成。主要缺点是边界单元形状难于完全保证。另外,RSD法对物体的方向特别敏感。
(5) 结点连元法 结点连元法是先生成结点,然后连接结点构成单元。最常用的是DT法和AFM法。
① DT法的基本原理:任意给定N个平面点Pi(i=1,2,…,N)构成的点集为S,称满足下列条件的点集Vi为Voronoi多边形。其中,Vi满足下列条件:Vi ={ X:|X- Pi|(|X- Pj|,X(R2,i(j,j=1,2,…,N }Vi为凸多边形,称{ Vi}mi=1为Dirichlet Tesselation图或对偶的Voronoi图。连接相邻Voronoi多边形的内核点可构成三角形Tk,称集合{ Tk }为Delaunay三角剖分。DT法的最大优点是遵循“最小角最大”和“空球”准则。因此,在各种二维三角剖分中,只有Delaunay三角剖分才同时满足全局和局部最优。 “最小角最大”准则是在不出现奇异性的情况下,Delaunay三角剖分最小角之和均大于任何非Delaunay剖分所形成三角形最小角之和。 “空球”准则是Delaunay三角剖分中任意三角形的外接圆(四面体为外接球)内不包括其他结点。 实现Delaunay三角剖分有多钟方法。Lee和Schachter操作很有效,但很难实现。而Watson、Cline和Renka、Sloan因操作容易、时间效率较好等优点而被广泛采用。为了进一步提高效率,Sloan研究其算法操作,提出了时间复杂性为O(N)(N为结点总数)的操作方法,从而为快速Delaunay三角剖分提供了有效途径。 虽然DT法既适用于二维域也适用于三维域,但直接的Delaunay三角剖分只适用于凸域,不适用于非凸域,因此发展了多种非凸域的Delaunay剖分。
② AFM法的基本原理:设区域的有向离散外边界集和边界前沿点集已经确定,按某种条件沿区域边界向区域内部扣除三角形(四面体)直到区域为空集。 |
|