楔形体及其变形体的受力分析
人们关注楔形体主要是为了解决齿轮、坝体中的受力分析,许多力学家对此进行了研究。较为著名的包括法国水利学家和数学家Joseph Valentin Boussinesq(1842-1929,译为布西內斯克,圣维南的学生), 法国工程师Alfred-Aimé Flamant (1839-1915,译为符拉芒,圣维南的学生),法国工程师Maurice Lévy(1838-1910,译为莱维,圣维南的学生),澳大利亚数学力学家John Henry Michell(1863-1940,译为米切尔,毕业于英国剑桥),英国工程师Charles Edward Inglis (1875-1952,译为英格里斯,毕业于剑桥)等人。他们的工作主要在于给出了恰当的应力函数,并得到各自问题的解,这里我们不按他们工作的先后顺序,按照从一般问题到特殊问题的顺序介绍楔形体及其变形体的受力分析。如图1所示,设有一楔形体中心角为α,下端无限长(不用考虑下端边界条件)不计体力,在楔顶受“集中力”F 作用,其方向与中心线成β 角。特别注意,由于我们将该问题简化为平面问题,F 并不是真实意义上的集中力,而是单位长度上的力。可以想象有一宽为l 的坝体,F 实际为坝顶集中力除以长度后的量,其单位为N/m,Fl 的单位才是N。
图1 楔形体受集中力模型
19世纪20年代,麦克斯韦 (JamesClerk Maxwell, 1831-1879) 提出了一种有关各种物理单位的关系,他将质量、长度和时间作为三个基本单位,将其他单位称为派生单位,认为它们都可以由三个基本单位表出,这为现代量纲分析起到了奠基性作用。这里,我们将采用量纲分析法来确定适用于Flamant问题的应力函数。
所谓的量纲是与力学量的单位相关,但又不同于单位的概念,例如质量的单位可以是千克、吨等,抛开具体单位,称它们的量纲为质量,用M 表示;长度的单位包括厘米、米、公里等,也抛开具体单位,称它们的量纲为长度,用L 表示;同理,称时间的量纲为时间,用T 表示。对于派生单位,例如加速度,国际单位制为m/s2,为一个长度量纲除以时间量纲的平方,用符号表示即为LT-2。再来分析力的量纲,力的国际单位为kgm/s2,为质量量纲乘以加速度量纲,用符号表示即为MLT-2。
再具体到图1所示的楔形体,任何物体的受力都由其所受的载荷、约束以及其几何形状决定,由此可知,楔形体中的应力分布必然由载荷F、β、α 以及坐标 (ρ, φ) 决定。做以下分析
可见,应力分量的量纲可以由F的量纲除以ρ 的量纲得到,即σ∝F/ρ,再考虑到应力与应力函数之间的关系
应力函数Φ 会比应力σ 关于ρ 再升高2次幂,由于应力分量中含有ρ-1,那可猜测应力函数Φ 中应该含有ρ,再考虑应力函数Φ 与极角φ 有关,设应力函数满足Φ=ρf(φ)。将其代入相容方程,确定f(φ),有
其中,A、B、C、D 为积分常数。将其代入应力函数中,得
注意到前两项ρcosφ 和ρsinφ 在直角坐标系中分别为x 和y,应力函数中一次项不影响应力分布,可以删除,因此,应力函数可写为
将其代入应力分量的表达式,有
现在写出边界条件,确定常数D 和C。在两个侧面上,有
可见,侧面上的边界条件自然满足,求不出D 和C。为了考虑边界条件F 的作用,我们在楔顶取出一小部分,如图2所示的Oab,其中ab 是假想楔顶与底部的分界面,其上应力分量按照应力的正方向画出,考虑其平衡条件。
图2 楔形体楔顶平衡条件
考察x 方向平衡:
σρ 在x 方向的分量为σcosφ。,在ab 面上的积分为
τρφ 在y 方向的分量为-τρφsinφ,在ab 面上的积分为。但因τρφ=0,所以这项为0,x 方向总的平衡为
考察y 方向平衡:
σρ在y 方向的分量为σρsinφ。,在ab 面上的积分为
τρφ在y 方向的分量为τρφcosφ,在ab 面上的积分为。但因τρφ=0,所以这项为0,y方向总的平衡为
考察绕O 点的矩平衡:
σρ通过O点,不产生矩。τρφ产生的矩可表示为。同样,因τρφ=0,绕矩平衡自然满足。
将应力分量表达式中的σρ代入边界条件,得
最后将求得的常数代入应力分量,得
上述解是圣维南的学生Flamant(符拉芒)给出。在这个问题上,澳大利亚的米切尔 (Michell) 给出了极坐标下的通用应力函数,并讨论了只有竖向载荷下的解(1900年左右)。此外,同为圣维南学生的布西内斯克 (Boussinesq) (1892年) 也研究过这一问题,但他们所使用的应力函数并不相同。
由上式的结果可以轻松的导出半平面体的受力分析,如图1所示的楔形体变形成为半平面体,令α=π(变为半平面体),β=0 (只考虑垂直载荷),并将其代入上式,得
图3 楔形体向半平面体推广
1891年,Carus Wilson曾利用实验的方法对图3所示的半平面体进行过研究,其结果与上式的结果相一致。下图是利用光弹实验得到应力分布图,也与上式结果一致。
图4 半平面体受集中载荷的光弹实验
继续求该问题的位移解,将上式代入物理方程, 并与几何分量建立联系,如下
对上式进行积分,得
如果将图3所示的半平面体视为在地表上盖一 幢摩天大楼产生的力,那么
就近似为摩天大楼在大地内部产生的应力分布,式 (7) 的第2式可导出地表的沉降量,令φ=2/π,有
这里I 表示求解位移时出现的积分常数,需要 利用边界条件确定。当大地上没有位移边界条件时,可选择一参考点,设参考点的ρ=s,则可求出任意点相对于参考点的沉降量,设为η,有
这就是符拉芒得到的半平面体在集中载荷下的沉降量。
1922年,英国的英格里斯 (Inglis) 还求解了楔形体顶有力偶作用时的解,这是变截面梁在弯矩作用下应力分析的基础。英格里斯在力学与工程的教育上做出了突出贡献,被认为是他那个时代最伟大的工程老师,在剑桥还有一座以他命名的建筑。如图5所示楔形体,在楔顶受力 偶M 作用,
图5 英格里斯和楔顶受力偶模型
特别注意,力偶的单位为N·m,考虑楔形体的宽度,再除以宽度后,力偶的单位变为了 N,做量纲分析如下:
从量纲上看,应力与外力的量纲关系为σ∝M/ρ2,再考虑到应力与应力函数之间的关系
应力函数 Φ 会比应力σ 关于ρ 升高2次幂, 由于应力分量中含有ρ-2,那可猜测应力函数 Φ 中应该含有ρ0,即不考虑ρ,因此设应力函数满足Φ=f(φ)。将其代入相容方程,确定f(φ),有
由应力函数写出应力分量,得
再通过边界条件确定常数B 和C,在侧面上,有
第一式自然满足,由第二式得
应力分量简化为
再考虑楔顶的力偶作用,利用圣维南原理,在 楔顶取出Oab,如图6所示,建立矩平衡方程
图6 圣维南原理写楔顶力偶边界条件将其代入应力分量表达式,得
同理,这一问题也可以令α=π 推广到半平面体的受力分析。
除了楔形体在楔顶受集中力、力偶之外,楔形体一面受分布载荷也引起了力学家的关注,这一问题是典型的坝体在蓄水之后的受力问题,一个接近于坝体受力但相对简单的问题是受均布载荷问题,这一问题最早由莱维进行了求解。如图7所示。
图7 莱维和楔形体一侧受均布载荷
依然采用量纲分析的方法,确定该问题所适用的应力函数。由题意可知,楔形体中的应力分布必然由载荷q、β、α 以及坐标 (ρ,0) 决定,这里还需要强调,q 的单位为N/㎡,因为仍然需要考虑坝体宽度方向的尺寸,做以下分析
从量纲上看,应力与外力的量纲一致,即σ∝q,再考虑到应力与应力函数之间的关系
应力函数 Φ 会比应力σ 关于ρ 再升高2次幂, 由于应力分量中含有ρ0,那可猜测应力函数 Φ 中应该含有ρ2 ,再考虑应力函数 Φ 与极角φ 有关,设应力函数满足 Φ =ρ2f(φ)。将其代 入相容方程,确定f(φ),有
由应力函数写出应力分量,为
共四个待定常数,需要通过边界条件来确定:
左侧边界自由:
右侧受均布载荷:
将应力分量代入边界条件,有
这是一个4元一次方程组,只要有耐心和细心, 求解方程组就可以得到
将这些常数代入应力分量表达式,得到一侧受 均布载荷的楔形体的应力分布
这一问题由圣维南的学生莱维 (Lévy) 求解,也被称为莱维解。莱维的另一大贡献在于将圣维南所说的“主应变方向与主应力方向一致”的假设更改为“主应变增量方向与主应力方向一致”,这也是第一次尝试使用增量理论。
参考文献
徐芝纶. 《弹性力学》(第5版)
Timoshenko and Goodier. Theory of elasticity. 1951
Forces concentr′ees, forces distribu′ees sur unesurface.
http://mms2.ensmp.fr/mmc_paris/annales/corrige2016.pdf
应该是法语,看的不是很懂,这个连接可以直接下载pdf文件
来源:力学酒吧微信公众号(ID:Mechanics-Bar),作者:张伟伟。
页:
[1]