主振型的正交性及其物理意义浅析
在同一体系中,不同的两个固有振型之间,无论对于质量矩阵或是刚度矩阵,都具有正交的性质,分别称为第一正交性和第二正交性。利用这一特性,一是可以将多自由度体系的强迫振动简化为单自由度问题(主要应用在任意干扰力作用下的强迫振动),二是可以检查主振型的计算是否正确,并判断主振型的形状特点。
主振型的第一正交性 n个自由度体系的振型方程为:
设ωi为第i个自振频率,其相应的振型为 ;ωj为第j个自振频率,其相应的振型为。将它们分别代入上式,可得:
对上边第一个公式两边左乘以,对上边第二个公式两边左乘以,则有:
将上式两边转置,将有:
将:
减去
得:
当时,得:
即:
上两式称为主振型的第一正交性,它表明,对于质量矩阵,不同频率的两个主振型是彼此正交的。
主振型的第二正交性 将
代入
可得:
上式称为主振型的第二正交性,它表明,对于刚度矩阵,不同频率的两个主振型也是彼此正交的。
主振型正交性的物理意义 1、第一正交性的物理意义
将分别乘以和,可以得出以下两式:
上式说明第i主振型惯性力在第j主振型上所做的虚功为零;
上式说明第j主振型惯性力在第i主振型上所做的虚功为零。
因此,第一正交性的物理意义是:相应于某一主振型的惯性力不会在其他主振型上做功。
2、第二正交性的物理意义
由
可推导出
由
可知,第二正交性的物理意义是:相应于某一主振型的弹性力不会在其他主振型上做功。
3、小结
主振型的正交性可理解为:相应于某一主振型作简谐振动的能量不会转移到其他振型上去,也就不会引起其他振型的振动。因此,各主振型可单独存在而不互相干扰。
来源:整理自重庆大学土木工程学院《结构力学——主振型的正交性》PPT讲义
页:
[1]